Theorem 1. For any prime number p, there are exactly two non-isomorphic rings of order p.

Proof. All rings are additive Abelian groups. The only group of order p is the cyclic group \mathbb{Z}_p. This group is generated by 1. Let R be a ring of order p. Then, without loss of generality, R is identical to \mathbb{Z}_p as far as the additive structure is concerned, though R may have a different multiplicative structure. Because of the distributivity axiom and because 1 generates R, multiplication in R is completely determined by the product of 1 with itself, for example, $2 \times 3 = (1 + 1) \times (1 + 1 + 1) = 6 \cdot (1 \times 1)$, where \times is the multiplication operation on the ring and $n \cdot x$ is shorthand for the repeated addition $x + x + \cdots + x(n \text{ times})$. This shorthand provided by the \cdot operator could also be interpreted as the scalar multiplication in a \mathbb{Z}-module. Since there can be at most p values assigned to 1×1, there can be at most p non-isomorphic rings of order p.

Suppose R had the multiplication \times_a defined as follows. Define $x \times_a y = a \cdot xy$, where the implied multiplication refers to standard multiplication in \mathbb{Z}_p. This operation is obviously well-defined. We must show that \times_a is associative, and distributive.

\[
x \times_a (y + z) = a \cdot x(y + z) \\
= a \cdot (xy + xz) \\
= a \cdot xy + a \cdot xz \\
= x \times_a y + x \times_a z
\]

This proves that \times_a is left-distributive. It is also right-distributive. Associativity is also simple to prove.

\[
(x \times_a y) \times_a z = (a \cdot xy) \times_a z \\
= a \cdot (a \cdot xyz) \\
= a^2 \cdot (xyz)
\]

Similarly,

\[
x \times_a (y \times_a z) = x \times_a (a \cdot yz) \\
= a \cdot (a \cdot xyz) \\
= a^2 \cdot (xyz)
\]

Thus associativity is proven. Notice that as a ranges from 0 to $p - 1$, $1 \times_a 1$ ranges from 0 to $p - 1$. When $a = 0$, the ring becomes the trivial ring.
where the multiplication is defined to be identically 0. If \(a \neq 0 \), then \(R \) is ring-isomorphic to \(\mathbb{Z}_p \), regardless of the value of \(a \). This we now prove.

Define the function \(\phi_{a^{-1}} : (\mathbb{Z}_p, +, \times) \rightarrow (R, +, \times_{a}) \) by setting \(\phi_{a^{-1}}(x) = a^{-1} \cdot x \). Here \(a^{-1} \) refers to the multiplicative inverse of \(a \) in the field \(\mathbb{Z}_p \). Note that \(\phi_{a}(\phi_{a^{-1}}(x)) = \phi_{a^{-1}}(\phi_{a}(x)) = x \), so \(\phi_{a^{-1}} \) has a 2-sided inverse and is, therefore, bijective. We now prove that \(\phi_{a^{-1}} \) homomorphism.

\[
\phi_{a^{-1}}(x) \times_{a} \phi_{a^{-1}}(y) = (a^{-1} \cdot x) \times_{a} (a^{-1} \cdot y) \\
= a \cdot (a^{-2} \cdot xy) \\
= a^{-1} \cdot xy \\
= \phi_{a^{-1}}(xy)
\]

This establishes that \(\phi_{a^{-1}} \) is an isomorphism. Thus the theorem is proven. The only two truly different rings of order \(p \) are \(\mathbb{Z}_p \) with standard multiplication and trivial multiplication. \(\square \)