• Goals for this lab are:

 - NLTK documentation

 - Try some NLTK clustering algorithms

 - Examine the results
• Root is at

• Package we are interested in today is nltk.cluster

• Pretty standard documentation structure
Using k-means clusterer

- Initialize a clusterer.
 - Must give it # of clusters and distance metric
 - Euclidean_distance, cosine_distance
 - Some defaults
 - repeats=1,
 - conv_test=1,e-0,6,
 - initial_means=None

- Create clusters using clusterer we initialized
 - Must give it vectors
 - Defaults
 - assign_clusters=False
 - trace=False
Vectors for clustering

• Array of vectors with n elements
 • Each document is one vector
 • n is the number of features
• Actually a numpy array
• Demo methods in the clusterers.
Another Example

Four documents: “Computer science is a STEM technology.”
“Biology is a STEM technology.” “Philosophy is a liberal art.”
“History is a liberal art.”

Assign positions to terms: 1:Computer 2:science 3:is 4:a
5:STEM 6:technology 7:Biology 8 philosophy 9:liberal 10:art
11:history

Computer science is a STEM technology: [1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0]

Biology is a STEM technology: [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0]

Philosophy is a liberal art: [0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0]

History is a liberal art: [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1]
Okay, Try Some Stuff

- Create some simple examples and try the various parameters of the various clusterers, using the API to see what’s what.

- Get your own corpus in, do simple word counts, and cluster your documents.
More Useful NLTK stuff

• We have mostly been working with the nltk.text module. It has useful methods like

 • count: takes a word, gives # of times it occurs

 • vocab: produces a frequency distribution of terms in a text object

 • it has a class nltk.text.TextCollection, which has a tf*idf method
And more

• For GAAC clusterer:
 • NO required parameters, typical to give it # of clusters.

• For EM clusterer
 • The only required parameter is initial_means: the means of the gaussian cluster centers.
 • Plus a bunch of things which have reasonable defaults.