

Broader and Earlier Access to Machine Learning

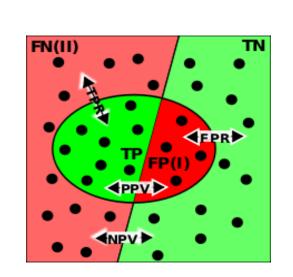
Thomas Way, Lillian Cassel, Paula Matuszek, Mary-Angela Papalaskari, Divya Bonagiri and Aravinda Gaddam

Department of **Computing Sciences**

Goal

Create educator modules for teachers in any discipline to include relevant Machine Learning concepts.

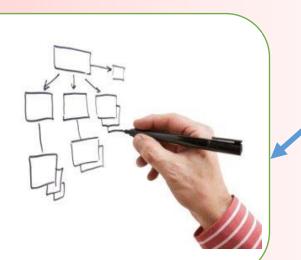
- Identify Relevant Topics
- Produce Ready Modules
- Disseminate Online


Module Example

Complete material to teach machine learning in context, understandable by noncomputer scientists. Typical module contains:

- **Instructor Overview** background, concepts
- Handouts Activities
- Data general and discipline specific
- **Evaluation** pre/post tests, quizzes

Modules

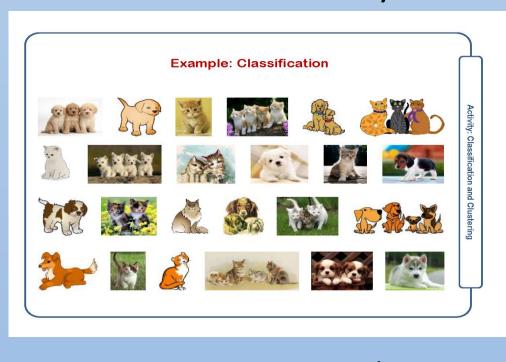

Evaluating Classifiers How to compare results

Kinds of ML Overview of ML areas

Reinforcement

Decision Trees Uses WEKA and data sets

Pre & Post Test


Module Example: Classification & Clustering

Instructor Overview

Group A

Hands-on Activity

Create groups using example groups or by finding similarities

Classification **Group B**

background, **Animal Game**

Text

Classification

WEKA, classify

K - Means

advanced

topic

Uses WEKA,

tweets, authors WEKA

Dimensionality

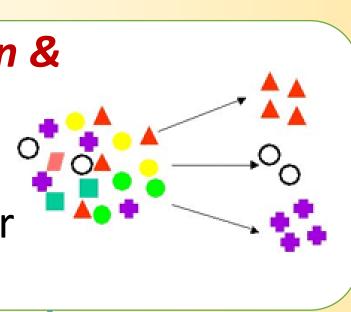
advanced topic \(\le \)

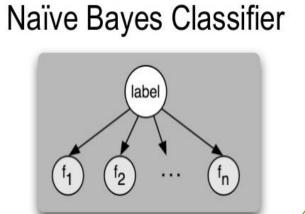
Reduction

Uses WEKA,

introduces

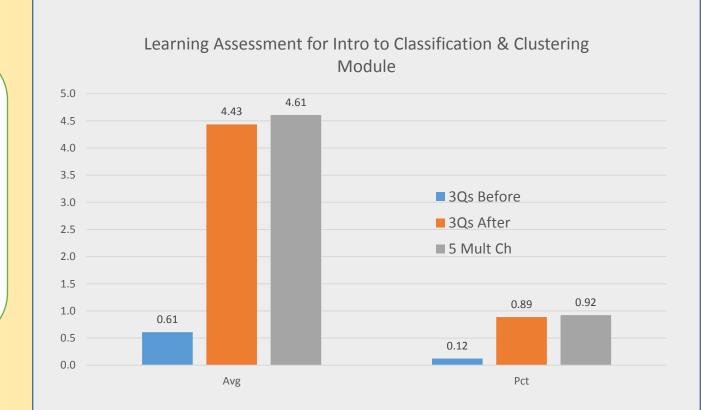
Intro


Choosing Inputs Approaches to data sets


Neural Networks Uses SimBrain software

Classification & Clustering Hands-on, no computer needed

Naive Bayes Uses Python or WEKA


Machine Learning

Computer programs that find patterns in data, enabling them to "learn" and make decisions based on that learning.

Results

Results of pre/post tests for Classification & Clustering module show strong learning and good retention.

Pre test given **before** any material. Post test given 2 days later.

41 students pre/post test scores went from low (12%) to solid (89%) understanding on identical questions, with strong ability to apply knowledge (92%) to similar problems.

Acknowledgements

Project funded in part by NSF DUE award 1141033. Thanks to Carol Weiss for learning measure design and evaluation.

Future Plans

- Complete model design
- Gather more domain-specific data sets
- Disseminate via: ComputingPortal.org/MachineLearning

21st Annual Conference on Innovation and **Technology in Computer** Science Education (ITICSE)

11th - 13th July 2016, Arequipa, Peru