
1

Genetic Algorithms

MSE 2400 EaLiCaRA

Dr. Tom Way

2

Evolution – Darwin’s Natural Selection

• IF there are organisms that reproduce, and

• IF offspring inherit traits from their progenitors, and

• IF there is variability of traits, and

• IF the environment cannot support all members of a
growing population,

• THEN those members of the population with less-
adaptive traits (determined by the environment) will die
out, and

• THEN those members with more-adaptive traits
(determined by the environment) will thrive

The result is the evolution of species.

3

Basic Idea Of Principle Of

Natural Selection

“Select The Best, Discard The Rest”

4

An Example of Natural Selection
• Giraffes have long necks.

Giraffes with slightly longer necks could feed on leaves of higher
branches when all lower ones had been eaten off.

 They had a better chance of survival.

 Favorable characteristic propagated through generations of
giraffes.

 Now, evolved species has long necks.

NOTE: Longer necks may have been a deviant characteristic
(mutation) initially but since it was favorable, was propagated over
generations. Now an established trait.

So, some mutations are beneficial.

5

Evolution Through Natural Selection

Initial Population Of Animals

Struggle For Existence-Survival Of the Fittest

Surviving Individuals Reproduce, Propagate Favorable

Characteristics

Millions Of Years

Evolved Species
(Favorable Characteristic Now A Trait Of Species)

How Genetic Algorithms Work

• Genetic Algorithms implement optimization

strategies by simulating evolution of

species through natural selection.

• Iteratively improve a set of possible

answers to a problem by combining best

parts of possible answers to form

(hopefully) better answers.

6

2

Genetic Algorithms

– Invented by John Holland 1975

– Made popular by John Koza 1992

7

Background...

• Evolution
– Organisms (animals or plants) produce a number of

offspring which are almost, but not entirely, like
themselves.

– Extinction and Adaptation

Some of these offspring may survive to
produce offspring of their own—some won’t

• The “better adapted” offspring are more likely to survive

• Over time, later generations become better and better
adapted

– Genes and Chromosomes
• Genes – “instructions” for building an organism

• Chromosomes – a sequence of genes

– Genetic Algorithms use this same process to “evolve” better
programs

8

Genetic Algorithm Concept

• Genetic algorithm (GA) introduces the
principle of evolution and genetics into
search among possible solutions to
given problem.

• This is done by the creation within a
machine of a population of individuals
represented by chromosomes,
in essence a set of character strings,
that are analogous to the DNA, that we
have in our own chromosomes.

9

Survival of the Fittest

• The main principle of evolution used in

GAs is “survival of the fittest”.
– The good solution survive, while bad ones die.

10

So what is a genetic algorithm?

• Genetic algorithms are a randomized

heuristic search strategy.

• Basic idea: Simulate natural selection,

where the population is composed of

candidate solutions.

• Focus is on evolving a population from

which strong and diverse candidates can

emerge via mutation and crossover

(mating).
11

Basic algorithm

• Create an initial population, either random

or “blank”.

• While the best candidate so far is not a

solution:

– Create new population using successor

functions.

– Evaluate the fitness of each candidate in the

population.

• Return the best candidate found.
12

3

13

Flowchart of a Genetic Algorithm
Begin

Initialize
population

Optimum
Solution?

T=T+1

Selection

Crossover

Mutation

N

Evaluate Solutions

Y

Stop

T =0

Crossover

• Crossover is the similar to natural

reproduction.

• Crossover combines genetic material

from two parents,

in order to produce superior offspring.

• Few types of crossover:
– One-point

– Multiple point.

14

Crossover

• E.g.

15

Parent 1 Parent 2

0

1

5

3

5

4

7

6

7

6

2

4

2

3

0

1

Crossover

• E.g.

16

0

1

2

3

5

4

7

6

7

6

5

4

2

3

0

1

Mutation

• Mutation introduces randomness into

the population.

• Why ‘Mutation’
– The idea of mutation is to reintroduce divergence into a

converging population.

• Mutation is performed on small part of

population,

in order to avoid entering unstable

state.

17

Mutation

1 1 0 1 0 10 0

0 1 0 1 0 10 1

1 0

0 1

Parent

Child

18

4

Fitness Function

• Fitness Function is the evaluation

function that is used to evaluated the

solutions and find out the better

solutions.

• Fitness of computed for each

individual based on the fitness

function and then determine what

solutions are better than others.

19

Selection

• The selection operation copies a

single individual, probabilistically

selected based on fitness, into the

next generation of the population.

• Several possible ways
– Keep the strongest

– Keep some of the weaker solutions

20

Selection
Survival of The Strongest

21

0.93 0.51 0.72 0.31 0.12 0.64

Previous generation

Next generation

0.93 0.72 0.64

Stopping Criteria

• Final problem is to decide when to

stop execution of algorithm.

• Two possible ways.

– First approach:

• Stop after production of definite number of generations

– Second approach:

• Stop when the improvement in average fitness over

two generations is below a threshold

22

Simple example – alternating string

• Let’s try to evolve a length 4 alternating string

• Initial population: C1=1000, C2=0011

• We roll the dice and end up creating C1’ =
cross (C1, C2) = 1011 and C2’ = cross (C1,
C1) = 1000.

• We mutate C1’ and the fourth bit flips, giving
1010. We mutate C2’ and get 1001.

• We run our solution test on each. C1’ is a
solution, so we return it and are done.

23

Basic components

• Candidate representation
– Important to choose this well. More work here

means less work on the successor functions.

• Successor function(s)
– Mutation, crossover

• Fitness function

• Solution test

• Some parameters
– Population size

– Generation limit

24

5

Candidate representation

• We want to encode candidates in a way

that makes mutation and crossover easy.

• The typical candidate representation is a

binary string. This string can be thought of

as the genetic code of a candidate – thus

the term “genetic algorithm”!

– Other representations are possible, but they

make crossover and mutation harder.

25

Candidate representation

example
• Let’s say we want to represent a rule for classifying

bikes as mountain bikes or hybrid, based on these
attributes:
– Make (Bridgestone, Cannondale, Nishiki, or Gary Fisher)

– Tire type (knobby, treads)

– Handlebar type (straight, curved)

– Water bottle holder (Boolean)

• We can encode a rule as a binary string, where each
bit represents whether a value is accepted.

Make Tires Handlebars Water bottle

B C N G K T S C Y N

26

Candidate representation

example
• The candidate will be a bit string of length 10,

because we have 10 possible attribute values.

• Let’s say we want a rule that will match any bike

that is made by Bridgestone or Cannondale, has

treaded tires, and has straight handlebars. This

rule could be represented as 1100011011:

Make Tires Handlebars Water bottle

1 1 0 0 0 1 1 0 1 1

B C N G K T S C Y N

27

Successor functions

• Mutation – Given a candidate, return a
slightly different candidate.

• Crossover – Given two candidates, produce
one that has elements of each.

• We don’t always generate a successor for
each candidate. Rather, we generate a
successor population based on the
candidates in the current population,
weighted by fitness.

28

Successor functions

• If your candidate representation is just a

binary string, then these are easy:

– Mutate(c): Copy c as c’. For each bit b in c’,

flip b with probability p. Return c’.

– Cross (c1, c2): Create a candidate c such

that c[i] = c1[i] if i % 2 = 0, c[i] = c2[i]

otherwise. Return c.

• Alternatively, any other scheme such that c gets

roughly equal information from c1 and c2.

29

Fitness function

• The fitness function is analogous to a
heuristic that estimates how close a
candidate is to being a solution.

• In general, the fitness function should be
consistent for better performance. However,
even if it is, there are no guarantees. This is
a probabilistic algorithm!

• In our classification rule example, one
possible fitness function would be information
gain over training data.

30

6

Solution test

• Given a candidate, return whether the

candidate is a solution.

• Often just answers the question “does the

candidate satisfy some set of constraints?”

• Optional! Sometimes you just want to do

the best you can in a given number of

generations, e.g. the classification rule

example.

31

New population generation

• How do we come up with a new

population?

– Given a population P, generate P’ by

performing crossover |P| times, each time

selecting candidates with probability

proportional to their fitness.

– Get P’’ by mutating each candidate in P’.

– Return P’’.

32

New population generation

• That was just one approach – be creative!

– That approach doesn’t explicitly allow

candidates to survive more than one

generation – this might not be optimal.

– Crossover is not necessary, though it can be

helpful in escaping local maxima. Mutation is

necessary (why?).

33

Basic algorithm (recap)

• Create an initial population, either random

or “blank”.

• While the best candidate so far is not a

solution:

– Create new population using successor

functions.

– Evaluate the fitness of each candidate in the

population.

• Return the best candidate found.
34

Pros and Cons

• Pros
– Faster (and lower memory requirements) than

searching a very large search space.

– Easy, in that if your candidate representation and
fitness function are correct, a solution can be found
without any explicit analytical work.

• Cons
– Randomized – not optimal or even complete.

– Can get stuck on local maxima, though crossover can
help mitigate this.

– It can be hard to work out how best to represent a
candidate as a bit string (or otherwise).

35

Examples - GA in the wild

• Rule set classifier generation

• I tried this as an undergrad, and it worked pretty well.
Rather than classifying bikes, I was classifying
Congressional representatives by party, based on their
voting records.

• General approach:
– Use GA to generate a rule for training data, with

information gain for the fitness function and no solution
test (just a generation limit).

– Remove positive examples covered by the rule.

– Repeat the above two steps until all positive training
examples are covered.

– To classify an example: iff the example is matched by any
of the rules generated, consider it a positive example.

36

7

Examples - GA in the wild

• ST5 Antenna – NASA Evolvable Systems Group

http://ti.arc.nasa.gov/projects/esg/research/antenna.htm
37

ST5 Antenna

• Needs less power than standard antennae.

• Doesn’t require a matching network nor a
phasing circuit – two less steps in design and
fabrication.

• More uniform coverage than standard
antennae, yielding more reliable
performance.

• Short design cycle – 3 person-months to
prototype fabrication, vs. 5-person months on
average for conventionally designed
antennae.

38

Examples - GA in the wild

• Image compression – evolving the Mona

Lisa

http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Generation 904314 Generation 2716

Generation 301 Generation 1

39

Evolving the Mona Lisa

• Uses only 50 polygons of 6 vertices each.

• Population size of 1, no crossover – parent

compared with child, and superior image kept.

• Assuming each polygon has 4 bytes for color

(RGBA) and 2 bytes for each of 6 vertices, this

image only requires 800 bytes.

• However, compression time is prohibitive and

storage is cheaper than processing time. 

40

