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Evolution – Darwin’s Natural Selection

• IF there are organisms that reproduce, and

• IF offspring inherit traits from their progenitors, and

• IF there is variability of traits, and

• IF the environment cannot support all members of a 
growing population,

• THEN those members of the population with less-
adaptive traits (determined by the environment) will die 
out, and

• THEN those members with more-adaptive traits 
(determined by the environment) will thrive

The result is the evolution of species. 
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Basic Idea Of Principle Of 

Natural Selection

“Select The Best, Discard The Rest”

4

An Example of Natural Selection
• Giraffes have long necks.

Giraffes with slightly longer necks could feed on leaves of higher 
branches when all lower ones had been eaten off.

 They had a better chance of survival.

 Favorable characteristic propagated through generations of 
giraffes.

 Now, evolved species has long necks.

NOTE: Longer necks may have been a deviant characteristic 
(mutation) initially but since it was favorable, was propagated over 
generations. Now an established trait.

So, some mutations are beneficial. 
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Evolution Through Natural Selection

Initial Population Of Animals

Struggle For Existence-Survival Of the Fittest

Surviving Individuals Reproduce, Propagate Favorable 

Characteristics

Millions Of Years

Evolved Species
(Favorable Characteristic Now  A Trait Of Species)

How Genetic Algorithms Work

• Genetic Algorithms implement optimization 

strategies by simulating evolution of 

species through natural selection.

• Iteratively improve a set of possible 

answers to a problem by combining best 

parts of possible answers to form 

(hopefully) better answers.
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Genetic Algorithms

– Invented by John Holland 1975

– Made popular by John Koza 1992
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Background...

• Evolution
– Organisms (animals or plants) produce a number of 

offspring which are almost, but not entirely, like 
themselves.

– Extinction and Adaptation

Some of these offspring may survive to 
produce offspring of their own—some won’t

• The “better adapted” offspring are more likely to survive

• Over time, later generations become better and better 
adapted

– Genes and Chromosomes
• Genes – “instructions” for building an organism

• Chromosomes – a sequence of genes

– Genetic Algorithms use this same process to “evolve” better 
programs
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Genetic Algorithm Concept

• Genetic algorithm (GA) introduces the 
principle of evolution and genetics into 
search among possible solutions to 
given problem.

• This is done by the creation within a 
machine of a population of individuals 
represented by chromosomes, 
in essence a set of character strings, 
that are analogous to the DNA, that we 
have in our own chromosomes.
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Survival of the Fittest

• The main principle of evolution used in 

GAs is “survival of the fittest”.
– The good solution survive, while bad ones die.
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So what is a genetic algorithm?

• Genetic algorithms are a randomized 

heuristic search strategy.

• Basic idea:  Simulate natural selection, 

where the population is composed of 

candidate solutions.

• Focus is on evolving a population from 

which strong and diverse candidates can 

emerge via mutation and crossover 

(mating).
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Basic algorithm

• Create an initial population, either random 

or “blank”.

• While the best candidate so far is not a 

solution:

– Create new population using successor 

functions.

– Evaluate the fitness of each candidate in the 

population.

• Return the best candidate found.
12
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Flowchart of a Genetic Algorithm
Begin

Initialize 
population

Optimum 
Solution?

T=T+1

Selection

Crossover

Mutation

N

Evaluate Solutions

Y

Stop

T =0

Crossover

• Crossover is  the similar to natural 

reproduction.

• Crossover combines genetic material 

from two parents,

in order to produce superior offspring.

• Few types of crossover:
– One-point

– Multiple point.
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Crossover

• E.g.
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Crossover

• E.g.
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Mutation

• Mutation introduces randomness into 

the population.

• Why ‘Mutation’
– The idea of mutation is to reintroduce divergence into a 

converging population.

• Mutation is performed on small part of 

population,

in order to avoid entering unstable 

state.
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Mutation

1 1 0 1 0 10 0

0 1 0 1 0 10 1

1 0

0 1

Parent

Child
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Fitness Function

• Fitness Function is the evaluation 

function that is used to evaluated the 

solutions and find out the better 

solutions.

• Fitness of computed for each 

individual based on the fitness 

function and then determine what 

solutions are better than others. 
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Selection

• The selection operation copies a 

single individual, probabilistically 

selected based on fitness, into the 

next generation of the population.

• Several possible ways
– Keep the strongest

– Keep some of the weaker solutions
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Selection 
Survival of The Strongest
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0.93 0.51 0.72 0.31 0.12 0.64

Previous generation

Next generation

0.93 0.72 0.64

Stopping Criteria

• Final problem is to decide when to 

stop execution of algorithm.

• Two possible ways.

– First approach:

• Stop after production of definite number of generations

– Second approach: 

• Stop when the improvement in average fitness over 

two generations is below a threshold
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Simple example – alternating string

• Let’s try to evolve a length 4 alternating string

• Initial population:  C1=1000, C2=0011

• We roll the dice and end up creating C1’ = 
cross (C1, C2) = 1011 and C2’ = cross (C1, 
C1) = 1000.

• We mutate C1’ and the fourth bit flips, giving 
1010.  We mutate C2’ and get 1001.

• We run our solution test on each.  C1’ is a 
solution, so we return it and are done.
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Basic components

• Candidate representation
– Important to choose this well.  More work here 

means less work on the successor functions.

• Successor function(s)
– Mutation, crossover

• Fitness function

• Solution test

• Some parameters
– Population size

– Generation limit
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Candidate representation

• We want to encode candidates in a way 

that makes mutation and crossover easy.

• The typical candidate representation is a 

binary string.  This string can be thought of 

as the genetic code of a candidate – thus 

the term “genetic algorithm”!

– Other representations are possible, but they 

make crossover and mutation harder.
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Candidate representation 

example
• Let’s say we want to represent a rule for classifying 

bikes as mountain bikes or hybrid, based on these 
attributes:
– Make (Bridgestone, Cannondale, Nishiki, or Gary Fisher)

– Tire type (knobby, treads)

– Handlebar type (straight, curved)

– Water bottle holder (Boolean)

• We can encode a rule as a binary string, where each 
bit represents whether a value is accepted.

Make                        Tires             Handlebars       Water bottle

B C N G K T S C Y N
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Candidate representation 

example
• The candidate will be a bit string of length 10, 

because we have 10 possible attribute values.

• Let’s say we want a rule that will match any bike 

that is made by Bridgestone or Cannondale, has 

treaded tires, and has straight handlebars.  This 

rule could be represented as 1100011011:

Make                       Tires             Handlebars         Water bottle

1 1 0 0 0 1 1 0 1 1

B C N G K T S C Y N
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Successor functions

• Mutation – Given a candidate, return a 
slightly different candidate.

• Crossover – Given two candidates, produce 
one that has elements of each.

• We don’t always generate a successor for 
each candidate.  Rather, we generate a 
successor population based on the 
candidates in the current population, 
weighted by fitness.
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Successor functions

• If your candidate representation is just a 

binary string, then these are easy:

– Mutate(c):  Copy c as c’.  For each bit b in c’, 

flip b with probability p.  Return c’.

– Cross (c1, c2):  Create a candidate c such 

that c[i] = c1[i] if i % 2 = 0, c[i] = c2[i] 

otherwise.  Return c.

• Alternatively, any other scheme such that c gets 

roughly equal information from c1 and c2.
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Fitness function

• The fitness function is analogous to a 
heuristic that estimates how close a 
candidate is to being a solution.

• In general, the fitness function should be 
consistent for better performance.  However, 
even if it is, there are no guarantees.  This is 
a probabilistic algorithm!

• In our classification rule example, one 
possible fitness function would be information 
gain over training data.
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Solution test

• Given a candidate, return whether the 

candidate is a solution.

• Often just answers the question “does the 

candidate satisfy some set of constraints?”

• Optional!  Sometimes you just want to do 

the best you can in a given number of 

generations, e.g. the classification rule 

example.
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New population generation

• How do we come up with a new 

population?

– Given a population P, generate P’ by 

performing crossover |P| times, each time 

selecting candidates with probability 

proportional to their fitness.

– Get P’’ by mutating each candidate in P’.

– Return P’’.
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New population generation

• That was just one approach – be creative!

– That approach doesn’t explicitly allow 

candidates to survive more than one 

generation – this might not be optimal.

– Crossover is not necessary, though it can be 

helpful in escaping local maxima.  Mutation is

necessary (why?).
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Basic algorithm (recap)

• Create an initial population, either random 

or “blank”.

• While the best candidate so far is not a 

solution:

– Create new population using successor 

functions.

– Evaluate the fitness of each candidate in the 

population.

• Return the best candidate found.
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Pros and Cons

• Pros
– Faster (and lower memory requirements) than 

searching a very large search space.

– Easy, in that if your candidate representation and 
fitness function are correct, a solution can be found 
without any explicit analytical work.

• Cons
– Randomized – not optimal or even complete.

– Can get stuck on local maxima, though crossover can 
help mitigate this.

– It can be hard to work out how best to represent a 
candidate as a bit string (or otherwise).
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Examples - GA in the wild

• Rule set classifier generation

• I tried this as an undergrad, and it worked pretty well.  
Rather than classifying bikes, I was classifying 
Congressional representatives by party, based on their 
voting records.

• General approach:
– Use GA to generate a rule for training data, with 

information gain for the fitness function and no solution 
test (just a generation limit).

– Remove positive examples covered by the rule.

– Repeat the above two steps until all positive training 
examples are covered.

– To classify an example:  iff the example is matched by any 
of the rules generated, consider it a positive example.
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Examples - GA in the wild

• ST5 Antenna – NASA Evolvable Systems Group

http://ti.arc.nasa.gov/projects/esg/research/antenna.htm
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ST5 Antenna

• Needs less power than standard antennae.

• Doesn’t require a matching network nor a 
phasing circuit – two less steps in design and 
fabrication.

• More uniform coverage than standard 
antennae, yielding more reliable 
performance.

• Short design cycle – 3 person-months to 
prototype fabrication, vs. 5-person months on 
average for conventionally designed 
antennae.
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Examples - GA in the wild

• Image compression – evolving the Mona 

Lisa

http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Generation 904314 Generation 2716 

Generation 301 Generation 1
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Evolving the Mona Lisa

• Uses only 50 polygons of 6 vertices each.

• Population size of 1, no crossover – parent 

compared with child, and superior image kept.

• Assuming each polygon has 4 bytes for color 

(RGBA) and 2 bytes for each of 6 vertices, this 

image only requires 800 bytes.

• However, compression time is prohibitive and 

storage is cheaper than processing time. 
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