Genetic Algorithms

MSE 2400 EaLiCaRA
Dr. Tom Way

Evolution — Darwin’s Natural Selection

* |F there are organisms that reproduce, and

« |IF offspring inherit traits from their progenitors, and

* |IF there is variability of traits, and

* |IF the environment cannot support all members of a
growing population,

* THEN those members of the population with less-
adaptive traits (determined by the environment) will die
out, and

* THEN those members with more-adaptive traits
(determined by the environment) will thrive

The result is the evolution of species.

Basic Idea Of Principle Of
Natural Selection

“Select The Best, Discard The Rest”

An Example of Natural Selection

+ Giraffes have long necks.

Giraffes with slightly longer necks could feed on leaves of higher
branches when all lower ones had been eaten off.

- They had a better chance of survival.

- Favorable characteristic propagated through generations of
giraffes.

- Now, evolved species has long necks.

NOTE: Longer necks may have been a deviant characteristic
(mutation) initially but since it was favorable, was propagated over
generations. Now an established trait.

So, some mutations are beneficial.

Evolution Through Natural Selection

Initial Population Of Animals

|

Struggle For Existence-Survival Of the Fittest

|

urviving Individuals Reproduce, Propagate Favorable
Characteristics

Millions Of Years

Evolved Species
(Favorable Characteristic Now A Trait Of Species)

How Genetic Algorithms Work

Genetic Algorithms implement optimization
strategies by simulating evolution of
species through natural selection.

Iteratively improve a set of possible
answers to a problem by combining best
parts of possible answers to form
(hopefully) better answers.

Genetic Algorithms

— Invented by John Holland 1975
— Made popular by John Koza 1992

Background...

* Evolution
— Organisms (animals or plants) produce a number of
offspring which are almost, but not entirely, like
themselves.
— Extinction and Adaptation
Some of these offspring may survive to
produce offspring of their own—some won'’t
The “better adapted” offspring are more likely to survive
Over time, later generations become better and better
adapted
— Genes and Chromosomes
Genes — “instructions” for building an organism
Chromosomes — a sequence of genes

— Genetic Algorithms use this same process to “evolve” better
programs

Genetic Algorithm Concept

* Genetic algorithm (GA) introduces the
principle of evolution and genetics into
search among possible solutions to
given problem.

* This is done by the creation within a
machine of a population of individuals
represented by chromosomes,
in essence a set of character strings,
that are analogous to the DNA, that we
have in our own chromosomes.

Survival of the Fittest

+ The main principle of evolution used in

GAs is “survival of the fittest”.
— The good solution survive, while bad ones die.

10

So what is a genetic algorithm?

» Genetic algorithms are a randomized
heuristic search strateqy.

» Basic idea: Simulate natural selection,
where the population is composed of
candidate solutions.

» Focus is on evolving a population from
which strong and diverse candidates can
emerge via mutation and crossover
(mating).

Basic algorithm

+ Create an initial population, either random
or “blank”.

» While the best candidate so far is not a
solution:

— Create new population using successor
functions.

— Evaluate the fitness of each candidate in the
population.

» Return the best candidate found.

12

Flowchart of a Genetic Algorithm

Initialize
population

Evaluate Solutions

=0

Crossover

* Crossover is the similar to natural
reproduction.

» Crossover combines genetic material
from two parents,
in order to produce superior offspring.

* Few types of crossover:

Optimum
Solution?
) \
T=T+l Crossover
13
Crossover
* E.g.
o] 7]
1 g
NERA NER)
2]
& 1
7 0
Parent 1 Parent 2
15
Mutation

* Mutation introduces randomness into
the population.
+ Why ‘Mutation’

— The idea of mutation is to reintroduce divergence into a
converging population.

» Mutation is performed on small part of
population,
in order to avoid entering unstable
state.

17

— One-point
— Multiple point.
Crossover
* E.g.
T D
Mutation

Parent 1 1 [0 [1 [0 [o o [1]

J

(;h"dO:IOlOiOl

18

Fitness Function

* Fitness Function is the evaluation
function that is used to evaluated the
solutions and find out the better
solutions.

* Fitness of computed for each
individual based on the fitness
function and then determine what
solutions are better than others.

19

Selection

* The selection operation copies a
single individual, probabilistically
selected based on fitness, into the
next generation of the population.

+ Several possible ways

— Keep the strongest
— Keep some of the weaker solutions

20

Selection

Survival of The Strongest

Pravious generation

Jext generation

21

Stopping Criteria

* Final problem is to decide when to
stop execution of algorithm.

Two possible ways.

— First approach:
« Stop after production of definite number of generations
— Second approach:

« Stop when the improvement in average fitness over
two generations is below a threshold

22

Simple example — alternating string

» Let’s try to evolve a length 4 alternating string
Initial population: C1=1000, C2=0011
We roll the dice and end up creating C1’ =

cross (C1, C2) =1011 and C2’ = cross (C1,
C1) = 1000.

+ We mutate C1’ and the fourth bit flips, giving
1010. We mutate C2’ and get 1001.

* We run our solution test on each. C1’is a
solution, so we return it and are done.

23

Basic components

+ Candidate representation

— Important to choose this well. More work here
means less work on the successor functions.

Successor function(s)
— Mutation, crossover

* Fitness function

* Solution test

* Some parameters

— Population size

— Generation limit

24

Candidate representation

+ We want to encode candidates in a way
that makes mutation and crossover easy.
The typical candidate representation is a
binary string. This string can be thought of
as the genetic code of a candidate — thus
the term “genetic algorithm”!

— Other representations are possible, but they
make crossover and mutation harder.

25

Candidate representation
example

» Let's say we want to represent a rule for classifying
bikes as mountain bikes or hybrid, based on these
attributes:

— Make (Bridgestone, Cannondale, Nishiki, or Gary Fisher)
— Tire type (knobby, treads)

— Handlebar type (straight, curved)

— Water bottle holder (Boolean)

* We can encode a rule as a binary string, where each
bit represents whether a value is accepted.

Make Tires Handlebars Water bottle

B C/ N G s c [Y] [N]

26

Candidate representation

example

» The candidate will be a bit string of length 10,
because we have 10 possible attribute values.

* Let’s say we want a rule that will match any bike
that is made by Bridgestone or Cannondale, has
treaded tires, and has straight handlebars. This
rule could be represented as 1100011011:

Make Tires Handlebars Water bottle
11 flolfo] [l 10
Bl CINIG slc (]

27

Successor functions

Mutation — Given a candidate, return a

slightly different candidate.

» Crossover — Given two candidates, produce
one that has elements of each.

+ We don’t always generate a successor for

each candidate. Rather, we generate a

successor population based on the

candidates in the current population,

weighted by fitness.

28

Successor functions

« If your candidate representation is just a
binary string, then these are easy:
— Mutate(c): Copy cas c’. Foreach bitbinc,
flip b with probability p. Return c’.
—Cross (c1, c2): Create a candidate ¢ such
that cfi] = c1[i] if i % 2 = 0, c[i] = c2[i]
otherwise. Return c.

« Alternatively, any other scheme such that c gets
roughly equal information from c1 and c2.

29

Fitness function

The fitness function is analogous to a
heuristic that estimates how close a
candidate is to being a solution.

In general, the fitness function should be
consistent for better performance. However,
even if it is, there are no guarantees. This is
a probabilistic algorithm!

In our classification rule example, one
possible fitness function would be information
gain over training data.

30

Solution test

» Given a candidate, return whether the
candidate is a solution.

+ Often just answers the question “does the
candidate satisfy some set of constraints?”

» Optional! Sometimes you just want to do
the best you can in a given number of

generations, e.g. the classification rule
example.

31

New population generation

* How do we come up with a new
population?

— Given a population P, generate P’ by
performing crossover |P| times, each time
selecting candidates with probability
proportional to their fitness.

— Get P” by mutating each candidate in P’.

— Return P”.

32

New population generation

» That was just one approach — be creative!
— That approach doesn’t explicitly allow
candidates to survive more than one
generation — this might not be optimal.
— Crossover is not necessary, though it can be

helpful in escaping local maxima. Mutation is
necessary (why?).

33

Basic algorithm (recap)

 Create an initial population, either random
or “blank”.

» While the best candidate so far is not a
solution:

— Create new population using successor
functions.

— Evaluate the fitness of each candidate in the
population.

» Return the best candidate found.

34

Pros and Cons

* Pros
— Faster (and lower memory requirements) than
searching a very large search space.

— Easy, in that if your candidate representation and
fitness function are correct, a solution can be found
without any explicit analytical work.

» Cons
— Randomized — not optimal or even complete.

— Can get stuck on local maxima, though crossover can
help mitigate this.

— It can be hard to work out how best to represent a
candidate as a bit string (or otherwise).

35

Examples - GA in the wild

* Rule set classifier generation
« | tried this as an undergrad, and it worked pretty well.
Rather than classifying bikes, | was classifying

Congressional representatives by party, based on their
voting records.

» General approach:
— Use GA to generate a rule for training data, with

information gain for the fitness function and no solution
test (just a generation limit).

— Remove positive examples covered by the rule.

— Repeat the above two steps until all positive training
examples are covered.

— To classify an example: iff the example is matched by any
of the rules generated, consider it a positive example.

36

Examples - GA in the wild

« ST5 Antenna — NASA Evolvable Systems Group

http://ti.arc.nasa.gov/projects/esg/research/antenna.htm
37

ST5 Antenna

Needs less power than standard antennae.

Doesn’t require a matching network nor a
phasing circuit — two less steps in design and
fabrication.

More uniform coverage than standard
antennae, yielding more reliable
performance.

Short design cycle — 3 person-months to
prototype fabrication, vs. 5-person months on
average for conventionally designed
antennae.

38

Examples - GA in the wild

» Image compression — evolving the Mona

Lisa
Generation 301
Generation 2716 .a Generation 904314

http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/ 39

Generation 1

Evolving the Mona Lisa

Uses only 50 polygons of 6 vertices each.
Population size of 1, no crossover — parent
compared with child, and superior image kept.
Assuming each polygon has 4 bytes for color
(RGBA) and 2 bytes for each of 6 vertices, this
image only requires 800 bytes.

However, compression time is prohibitive and
storage is cheaper than processing time. ®

40

