Binary and Decimal Numbers

What is a binary number?

A binary number is a number that includes only ones and zeroes.
 The number could be of any length
 The following are all examples of binary numbers
 0

		10101
		0101010
		1011110101
		0110101110
00		000111
	~	

 Another name for binary is base-2 (pronounced "base two")

What is a decimal number?

- The numbers that we are used to seeing are called decimal numbers.
- decimal numbers consist of the digits from o (zero) through 9.
- The following are examples of decimal #'rs

3	76
15	32423234
890	53

 Another name for decimal numbers are base-10 (pronounced "base ten") numbers.

Equivalence of Binary and Decimal

- Every Binary number has a corresponding Decimal value (and vice versa)
- Examples:

1 10

01

1110

Binary Number	Decimal Equivalent
1	1
10	2
11	3
 1010111	 87

The value of a binary number

- Even though they look exactly the same, the value of the binary number, 101, is different from the value of the decimal number, 101.
 - The value of the binary number, 101, is equal to the decimal number five (i.e. 5)
 - The value of the decimal number, 101, is equal to one hundred and one
- When you see a number that consists of only ones and zeroes, you must be told if it is a binary number or a decimal number.

Computers store information using binary numbers

All information on computers is stored as numbers

- <u>All information</u> that is processed by computers is converted in one way or another into a sequence of numbers. This includes
 - numeric information
 - textual information and
 - Pictures
- Therefore, if we can derive a way to store and retrieve numbers electronically this method can be used by computers to store and retrieve <u>any type of information</u>.

How a computer stores information

Binary Numbers are at the heart of how a computer stores all information

- Computers Store ALL information using Binary Numbers
- Computers use binary numbers in different ways to store different types of information.
- Common types of information that are stored by computers are :
 - Whole numbers (i.e. Integers). Examples: 8 97 -732 0 -5 etc
 - Numbers with decimal points. Examples: 3.5 -1.234 0.765 999.001 etc
 - Textual information (including letters, symbols and digits)
- Keep reading ...

How to Convert from Binary to Decimal

Converting from binary to decimal Each position for a binary number has a value. For each digit, m`ultiply the digit by its position value Add up all of the products to get the final result The decimal value of binary 101 is computed below: add these position values 2 un. 1 0 1 binary 1X1 0 X 2 digit X position value 1X4 result

What about a longer number?

- In general, the "position values" in a binary number are the powers of two.
 - The first position value is 2°, i.e. one
 - The 2nd position value is 2¹, i.e. two
 - The 2nd position value is 2², i.e. four
 - The 2nd position value is 2³, i.e. eight
 - The 2nd position value is 2⁴, i.e. sixteen
 - etc.

Another example • The value of binary 10011100 is decimal 156. This is worked out below: 128 32 16 8 Á. 2 64 1 1 1 1 0 1 0 0 0 0X 2 1X 10 1X 1X 10 1X 1 = 0 = 0 = 4 = 8 0X1 = 16 = 0 = 0 = 128 Answer: 156

Some Terminology

- The following are some terms that are used in the computer field
 - Each digit of a binary number is called a bit.
 - A binary number with eight bits (i.e. digits) is called a **byte**.

15

How many different numbers?

There are two different binary numbers with one bit:

o
1

There are four different binary numbers with two bits:

oo (i.e. decimal o)
o1 (i.e. decimal 1)
10 (i.e. decimal 2)
11 (i.e. decimal 3)

How many different numbers?

• There are 8 different binary numbers with 3 bits:

• 000	(i.e. decimal o)
• 001	(i.e. decimal 1)
• 010	(i.e. decimal 2)
• 011	(i.e. decimal 3)
1 00	(i.e. decimal 4)
101	(i.e. decimal 5)
110	(i.e. decimal 6)
• 111	(i.e. decimal 7)

different numbers - General Rule

<u># of bits</u>	# of different binary numbers
1 bit:	2 ¹ = 2
2 bits:	$2^2 = 4$
3 bits:	23 = 8
4 bits:	24 = 16
5 bits:	25 = 32
6 bits:	2 ⁶ = 64
7 bits:	27 = 128
8 bits:	2 ⁸ = 256
9 bits:	29 = 512
10 bits:	2 ¹⁰ = 1024
etc.	·

Smallest value for a binary

- The smallest value for a binary number of any number of bits is zero.
- This is the case when all bits are zero.

Smallest value for a binary

# of bits	smallest binary #	decimal value
	· · · · · · · ·	
1 bit:	0	0
2 bits:	00	0
3 bits:	000	0
4 bits:	0000	0
5 bits:	00000	0
6 bits:	000000	0
7 bits:	0000000	0
8 bits:	0000000	0
etc.		

Largest value for a binary

- The largest value for a binary number with a specific number of bits (i.e. digits) is when all of the bits are one.
- General rule: for a binary number with n bits, the largest possible value is : 2ⁿ - 1

Largest numbers

 The following are the largest values for binary numbers with a specific number of bits:

# of bits	largest binary #	decimal value	
1 bit:	1	1	
2 bits:	11	3	
3 bits:	111	7	
4 bits:	1111	15	
5 bits:	11111	31	
6 bits:	111111	31 63	
7 bits:	1111111	127	
8 bits: etc.	11111111	255	
			22

Why is it called "binary" (or base-2)?

- The prefix "bi" means "two" in Latin
- Binary derives its name from the fact that the digits in a "Binary" number can only have two possible values, o or 1
- It is also called "base-2" based on the fact that the column values are the powers of 2.
 (i.e. 2° 21 22 23 24 25 etc.)

21