## Binary and Decimal Numbers

## What is a decimal number?

- The numbers that we are used to seeing are called decimal numbers.
- decimal numbers consist of the digits from o (zero) through 9 .
- The following are examples of decimal \#'rs

| 3 | 76 |
| :--- | :--- |
| 15 | 32423234 |
| 890 | 53 |

- Another name for decimal numbers are base-10 (pronounced "base ten") numbers.


## What is a binary number?

- A binary number is a number that includes only ones and zeroes.
- The number could be of any length
- The following are all examples of binary numbers

| 0 | 10101 |
| :--- | :--- |
| 1 | 0101010 |
| 10 | 1011110101 |
| 01 | 0110101110 |
| 111000 | 000111 |

- Another name for binary is base-2 (pronounced "base two")


## Equivalence of Binary and Decimal

- Every Binary number has a corresponding Decimal value (and vice versa)
- Examples:

| Binary Number |  | Decimal Equivalent |
| :--- | :--- | :--- |
| 1 |  | 1 |
| 10 | 2 |  |
| 11 | 3 |  |
| $\ldots$ | $\ldots$ |  |
| 1010111 | 87 |  |

## The value of a binary number

[^0]All information on computers is stored as numbers

- All information that is processed by computers is converted in one way or another into a sequence of numbers. This includes
- numeric information
- textual information and
- Pictures
- Therefore, if we can derive a way to store and retrieve numbers electronically this method can be used by computers to store and retrieve any type of information.

Binary Numbers are at the heart of how a computer stores all information

- Computers Store ALL information using Binary Numbers
- Computers use binary numbers in different ways to store different types of information.
- Common types of information that are stored by computers are :

> " Whole numbers (i.e. Integers).
> Examples: 8 97 -732 o -5 etc
> " Numbers with decimal points.
> Examples: $3.5-1.2340 .765$ 999.001 etc
> " Textual information (including letters, symbols and digits)
> - Keep reading ...

# How a computer stores information 



How to Convert from Binary to Decimal


## What about a longer number?

- In general, the "position values" in a binary number are the powers of two.
- The first position value is $2^{\circ}$, i.e. one
- The 2nd position value is $2^{1}$, i.e. two
- The 2 nd position value is $2^{2}$, i.e. four
- The 2nd position value is $2^{3}$, i.e. eight
- The 2nd position value is 24 , i.e. sixteen
- etc.


## Example

- The value of binary 01100001 is decimal 105. This is worked out below:



## Some Terminology

- The following are some terms that are used in the computer field
- Each digit of a binary number is called a bit.
- A binary number with eight bits (i.e. digits) is called a byte.


## Another example

- The value of binary 10011100 is decimal 156. This is worked out below:



## How many different numbers?

- There are two different binary numbers with one bit:
- 0
- 1
- There are four different binary numbers with two bits:
= oo (i.e. decimal o)
- 01 (i.e. decimal 1)
= 10 (i.e. decimal 2)
- 11 (i.e. decimal 3)


## How many different numbers?

- There are 8 different binary numbers with 3 bits:

| " 000 | (i.e. decimal 0) |
| :--- | :--- |
| " 001 | (i.e. decimal 1) |
| " 010 | (i.e. decimal 2) |
| " 011 | (i.e. decimal 3) |
| " 100 | (i.e. decimal 4) |
| " 101 | (i.e. decimal 5) |
| " 110 | (i.e. decimal 6) |
| " 111 | (i.e. decimal 7) |

## \# different numbers - General Rule

| \# of bits | \# of different binary numbers |
| :--- | :--- |
| 1 bit: | $2^{1}=2$ |
| 2 bits: | $2^{2}=4$ |
| 3 bits: | $2^{3}=8$ |
| 4 bits: | $2^{4}=16$ |
| 5 bits: | $2^{5}=32$ |
| 6 bits: | $2^{6}=64$ |
| 7 bits: | $2^{7}=128$ |
| 8 bits: | $2^{8}=256$ |
| 9 bits: | $2^{9}=512$ |
| 10 bits: | $2^{10}=1024$ |
| etc. |  |

## Smallest value for a binary \#

- The smallest value for a binary number of any number of bits is zero.
- This is the case when all bits are zero.


## Smallest value for a binary \#

- The smallest value for a binary number with any number of bits is zero (i.e. when all the bits are zeros)
\# of bits smallest binary \# decimal value


## 1 bit.

2 bits:
3 bits:
4 bits:
5 bits:
6 bits:
7 bits:
8 bits:
etc.

## Largest value for a binary \#

- The largest value for a binary number with a specific number of bits (i.e. digits) is when all of the bits are one.
- General rule: for a binary number with $n$ bits, the largest possible value is : $2^{n}-1$


## Largest numbers

- The following are the largest values for binary numbers with a specific number of bits:

| \# of bits | largest binary \# | decimal value |  |
| :--- | :--- | :--- | :--- |
| 1 bit: | 1 | 1 |  |
| 2 bits: | 11 | 3 |  |
| 3 bits: | 111 | 7 |  |
| 4 bits: | 1111 | 15 |  |
| 5 bits: | 11111 | 31 |  |
| 6 bits: | 111111 | 63 |  |
| 7 bits: | 1111111 | 127 |  |
| 8 bits: | 11111111 | 255 |  |
| etc. |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Why is it called "binary" (or base-2)?

- The prefix "bi" means "two" in Latin
- Binary derives its name from the fact that the digits in a "Binary" number can only have two possible values, o or 1
- It is also called "base-2" based on the fact that the column values are the powers of 2 . (i.e. $\mathbf{2}^{0} \mathbf{2}^{1} \mathbf{2}^{2} \mathbf{2}^{3} \mathbf{2}^{4} \mathbf{2}^{5}$ etc.)


[^0]:    - Even though they look exactly the same, the value of the binary number, 101, is different from the value of the decimal number, 101.
    - The value of the binary number, 101, is equal to the decimal number five (i.e. 5)
    - The value of the decimal number, 101 , is equal to one hundred and one
    - When you see a number that consists of only ones and zeroes, you must be told if it is a binary number or a decimal number.

