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1 Introduction

The Machine Learning field evolved from the broad fieldAdfificial Intelligence

which aims to mimic intelligent abilities of humans by machines. In the fieltlaf

chine Learningone considers the important question of how to make machines able
to “learn”. Learning in this context is understood iaductive inferencewhere one
observegexampleghat represent incomplete information about some “statistical phe-
nomenon”. Inunsupervisedearning one typically tries to uncover hidden regularities
(e.g. clusters) or to detect anomalies in the data (for instance some unusual machine
function or a network intrusion). Isupervised learningthere is dabel associated

with each example. It is supposed to be the answer to a question about the example. If
the label is discrete, then the task is caldabsification problers otherwise, for real-
valued labels we speak ofragression problemBased on these examples (including

the labels), one is particularly interestedpi@dict the answer for other cases before
they are explicitly observed. Hence, learning is not only a question of remembering
but also ofgeneralization to unseen cases

2 Supervised Classification

An important task in Machine Learning assification also referred to as pattern
recognition, where one attempts to build algorithms capable of automatically con-
structing methods for distinguishing between different exemplars, based on their dif-
ferentiating patterns.

Watanabe[[1985] described a pattern as "the opposite of chaos; it is an entity,
vaguely defined, that could be given a name.” Examples of patterns are human faces,
text documents, handwritten letters or digits, EEG signals, and the DNA sequences that
may cause a certain disease. More formally, the goal of a (supervised) classification
task is to find a functional mapping between the input d&tadescribing the input
pattern, to a class lab&l (e.g.—1 or +1), such tha®” = f(X). The construction of
the mapping is based on so-caltegining datasupplied to the classification algorithm.

The aim is to accurately predict the correct label on unseen data.

A pattern (also: “example”) is described by features These are the characteris-
tics of the examples for a given problem. For instance, in a face recognition task some
features could be the color of the eyes or the distance between the eyes. Thus, the input
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to a pattern recognition task can be viewed as a two-dimensional matrix, whose axes
are the examples and the features.
Pattern classification tasks are often divided into several sub-tasks:

1. Data collection and representation.
2. Feature selection and/or feature reduction.
3. Classification.

Data collection and representation are mostly problem-specific. Therefore it is difficult
to give general statements about this step of the process. In broad terms, one should
try to find invariant features, that describe the differences in classes as best as possible.
Feature selection and feature reduction attempt to reduce the dimensionality (i.e.
the number of features) for the remaining steps of the task. Finally, the classification
phase of the process finds the actual mapping between patterns and labels (or targets).
In many applications the second step is not essential or is implicitly performed in the
third step.

3 Classification Algorithms

Although Machine Learning is a relatively young field of research, there exist more
learning algorithms than | can mention in this introduction. | chose to describe six
methods that | am frequently using when solving data analysis tasks (usually classifi-
cation). The first four methods are traditional techniques that have been widely used
in the past and work reasonably well when analyzing low dimensional data sets with
not too few labeled training examples. In the second part | will briefly outline two
methods (Support Vector Machines & Boosting) that have received a lot of attention in
the Machine Learning community recently. They are able to solve high-dimensional
problems with very few examples (e.g. fifty) quite accurately and also work efficiently
when examples are abundant (for instance several hundred thousands of examples).

3.1 Traditional Techniques

k-Nearest Neighbor Classification Arguably the simplest method is ttkeNearest
Neighbor classifier [Cover and Hart, 1967]. Here thepoints of the training data
closest to the test point are found, and a label is given to the test point by a majority
vote between thé& points. This method is highly intuitive and attains — given its
simplicity — remarkably low classification errors, but it is computationally expensive
and requires a large memory to store the training data.

Linear Discriminant Analysis computes a hyperplane in the input space that min-
imizes the within-class variance and maximizes the between class distance|[Fisher,
1936]. It can be efficiently computed in the linear case even with large data sets. How-
ever, often a linear separation is not sufficient. Nonlinear extensions by using kernels
exist [Mika et al.| 2003], however, making it difficult to apply it to problems with large
training sets.

Decision Trees Another intuitive class of classification algorithms deision trees
These algorithms solve the classification problem by repeatedly partitioning the in-
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Neural Networks are perhaps one of the most commonly used approaches to clas-
sification. Neural networks (suggested first by T %
ing [1992]) are a computational model inspired |
the connectivity of neurons in animate nervous s %‘ €3
tems. A further boost to their popularity came with tl \ @— Output
proof that they can approximate any function mappi %
via the Universal Approximation Theorem [Haykit
1999]. A simple scheme for a neural network
shown in Figure 2. Each circle denotes a compt mputs f?dde“ OIUtP“‘
tional element referred to asi@uron which computes_ e e

. L . Figure 2: A schematic diagram of a
a weighted sum of its inputs, and possibly performﬁe%ral network. Each circle in the
nonlinear function on this sum. If certain classesu¥den and output layer is a compu-
nonlinear functions are used, the function computetbnal element known as a neuron.
by the network can approximate any function (spedffigure taken fror Yom-Tay [2004])
ically a mapping from the training patterns to the training targets), provided enough
neurons exist in the network and enough training examples are provided.

3.2 Large Margin Algorithms

Machine learning rests upon the theoretical foundatioBtafistical Learning Theory
[e.g.[Vapnik| 1995] which provides conditions and guarantees for good generalization
of learning algorithms. Within the last decadi®rge margin classification techniques
have emerged as a practical result of the theory of generalization. Roughly speaking,
the margin is the distance of the example to the separation boundary and a large mar-
gin classifier generates decision boundaries with large margins to almost all training
examples. The two most widely studied classes of large margin classifi€3sigpert

Vector MachinegSVMs) [Boser et all, 1992, Cortes and Vapnik, 1995] Badsting
[Valiant,[ 1984 Schapire, 1992]:

Support Vector Machines work by mapping the training data into a feature space
by the aid of a so-called kernel function and then separating the data ufingea
margin hyperplangcf. Algorithm[])). Intuitively, the kernel computes a similarity
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between two given examples. Most commonly used kernel functionRBlFekernels
k(x,x') = exp (”";i’;lp andpolynomial kernelg:(x, x') = (x - x/)%.

The SVM finds a large margin separation between the training examples and pre-
viously unseen examples will often be close to the training examples. Hence, the large
margin then ensures that these examples are correctly classified as well, i.e., the deci-
sion rulegeneralizesFor so-callegositive definitdkernels, the optimization problem
can be solved efficiently and SVMs have an interpretation as a hyperplane separation
in a high dimensional feature space [Vapnik, 199%illet et all| 2001, Sablkopf and
Smola, 2002]. Support Vector Machines have been used on million dimensional data
sets and in other cases with more than a million examples [Mangasarian and Musi-
cant/ 200[L]. Research papers and implementations can be downloaded from the kernel
machines web-sitbttp://www.kernel-machines.org

Algorithm 1 The Support Vector Machine with regularization paraméter
Given labeled sequencésgi, y1),. .., (Xm,ym) (x € X andy € {—1,+1}) and a
kernelk, the SVM computes a function

f(s) = aik(xi,x) + b,
=1

where the coefficients; andb are found by solving the optimization problem

minimize 37" ciak(si, s5) + O3 &
subject to vif(xi) > 1 =&

Boosting The basic idea of boosting amthsemble learning algorithnis general is

to iteratively combine relatively simplease hypotheses sometimes calledules of
thumb- for the final prediction. One uses a so-calbase learnetthat generates the

base hypotheses. In boosting the base hypotheses are linearly combined. In the case
of two-class classificatigrthe final prediction is the weighted majority of the votes.

The combination of these simple rules can boost the performance drastically. It has
been shown that Boosting has strong ties to support vector machines and large margin
classification|[Ritsch| 2001, Meir and &sch| 2003]. Boosting techniques have been
used on very high dimensional data sets and can quite easily deal with than hundred
thousands of examples. Research papers and implementations can be downloaded
from http://www.boosting.org

4 Summary

Machine Learning research has been extremely active the last few years. The result
is a large number of very accurate and efficient algorithms that are quite easy to use
for a practitioner. It seems rewarding and almost mandatory for (computer) scientist

and engineers to learn how and where Machine Learning can help to automate tasks
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or provide predictions where humans have difficulties to comprehend large amounts
of data. The long list of examples where Machine Learning techniques were success-
fully applied includes: Text classification and categorization [e.g. Joathims, 2001] (for
instance spam filtering), network intrusion detection [e.g. Laskovlet al.| 2004], Bioin-
formatics (e.g. cancer tissue classification, gene finding; e.g. Furey|et al| [2000], Zien
et all [2000],/ Sonnenburg etlal. [2002]), brain computer interfacing [e.g. Blahkertz
et all,[2003], monitoring of electric appliances [e.9. Onoda éf al.,|2000], optimiza-
tion of hard disk caching strategies [e.g. Gramacy éf al., |2003] and disk spin-down
prediction [e.gl Helmbold et al., 2000]), drug discovery [e.g. Warmuth |et al.,| 2003]),
high-energy physics particle classification, recognition of hand writing, natural scene
analysis etc.

Obviously, in this brief summary | have to be far from being complete. | did not
mention regression algorithms (e.g. ridge regression, regression trees), unsupervised
learning algorithms (such as clustering, principle component analysis), reinforcement
learning, online learning algorithms or model-selection issues. Some of these tech-
niques extend the applicability of Machine Learning algorithms drastically and would
each require an introduction for them self. 1 would like to refer the interested reader
to two introductory books [Mendelson and Smola, 2003, von Luxburg |et al.,| 2004]
which are the result of the last annual Summer Schools on Machine Learning (cf.
http://mlss.cc ).
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