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1 Introduction

The Machine Learning field evolved from the broad field ofArtificial Intelligence,
which aims to mimic intelligent abilities of humans by machines. In the field ofMa-
chine Learningone considers the important question of how to make machines able
to “learn”. Learning in this context is understood asinductive inference, where one
observesexamplesthat represent incomplete information about some “statistical phe-
nomenon”. Inunsupervisedlearning one typically tries to uncover hidden regularities
(e.g. clusters) or to detect anomalies in the data (for instance some unusual machine
function or a network intrusion). Insupervised learning, there is alabel associated
with each example. It is supposed to be the answer to a question about the example. If
the label is discrete, then the task is calledclassification problem– otherwise, for real-
valued labels we speak of aregression problem. Based on these examples (including
the labels), one is particularly interested topredict the answer for other cases before
they are explicitly observed. Hence, learning is not only a question of remembering
but also ofgeneralization to unseen cases.

2 Supervised Classification

An important task in Machine Learning isclassification, also referred to as pattern
recognition, where one attempts to build algorithms capable of automatically con-
structing methods for distinguishing between different exemplars, based on their dif-
ferentiating patterns.

Watanabe [1985] described a pattern as ”the opposite of chaos; it is an entity,
vaguely defined, that could be given a name.” Examples of patterns are human faces,
text documents, handwritten letters or digits, EEG signals, and the DNA sequences that
may cause a certain disease. More formally, the goal of a (supervised) classification
task is to find a functional mapping between the input dataX, describing the input
pattern, to a class labelY (e.g.−1 or +1), such thatY = f(X). The construction of
the mapping is based on so-calledtraining datasupplied to the classification algorithm.
The aim is to accurately predict the correct label on unseen data.

A pattern (also: “example”) is described by itsfeatures. These are the characteris-
tics of the examples for a given problem. For instance, in a face recognition task some
features could be the color of the eyes or the distance between the eyes. Thus, the input
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to a pattern recognition task can be viewed as a two-dimensional matrix, whose axes
are the examples and the features.

Pattern classification tasks are often divided into several sub-tasks:

1. Data collection and representation.

2. Feature selection and/or feature reduction.

3. Classification.

Data collection and representation are mostly problem-specific. Therefore it is difficult
to give general statements about this step of the process. In broad terms, one should
try to find invariant features, that describe the differences in classes as best as possible.

Feature selection and feature reduction attempt to reduce the dimensionality (i.e.
the number of features) for the remaining steps of the task. Finally, the classification
phase of the process finds the actual mapping between patterns and labels (or targets).
In many applications the second step is not essential or is implicitly performed in the
third step.

3 Classification Algorithms

Although Machine Learning is a relatively young field of research, there exist more
learning algorithms than I can mention in this introduction. I chose to describe six
methods that I am frequently using when solving data analysis tasks (usually classifi-
cation). The first four methods are traditional techniques that have been widely used
in the past and work reasonably well when analyzing low dimensional data sets with
not too few labeled training examples. In the second part I will briefly outline two
methods (Support Vector Machines & Boosting) that have received a lot of attention in
the Machine Learning community recently. They are able to solve high-dimensional
problems with very few examples (e.g. fifty) quite accurately and also work efficiently
when examples are abundant (for instance several hundred thousands of examples).

3.1 Traditional Techniques

k-Nearest Neighbor Classification Arguably the simplest method is thek-Nearest
Neighborclassifier [Cover and Hart, 1967]. Here thek points of the training data
closest to the test point are found, and a label is given to the test point by a majority
vote between thek points. This method is highly intuitive and attains – given its
simplicity – remarkably low classification errors, but it is computationally expensive
and requires a large memory to store the training data.

Linear Discriminant Analysis computes a hyperplane in the input space that min-
imizes the within-class variance and maximizes the between class distance [Fisher,
1936]. It can be efficiently computed in the linear case even with large data sets. How-
ever, often a linear separation is not sufficient. Nonlinear extensions by using kernels
exist [Mika et al., 2003], however, making it difficult to apply it to problems with large
training sets.

Decision TreesAnother intuitive class of classification algorithms aredecision trees.
These algorithms solve the classification problem by repeatedly partitioning the in-
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put space, so as to build a tree whose nodes
are as pure as possible (that is, they contain
points of a single class). Classification of a
new test point is achieved by moving from top
to bottom along the branches of the tree, start-
ing from the root node, until a terminal node is
reached. Decision trees are simple yet effec-
tive classification schemes for small datasets.
The computational complexity scales unfa-
vorably with the number of dimensions of the
data. Large datasets tend to result in compli-
cated trees, which in turn require a large mem-

Figure 1: An example a decision tree (Figure
taken from Yom-Tov [2004]).

ory for storage. The C4.5 implementation by Quinlan [1992] is frequently used and
can be downloaded athttp://www.rulequest.com/Personal .

Neural Networks are perhaps one of the most commonly used approaches to clas-
sification. Neural networks (suggested first by Tur-
ing [1992]) are a computational model inspired by
the connectivity of neurons in animate nervous sys-
tems. A further boost to their popularity came with the
proof that they can approximate any function mapping
via the Universal Approximation Theorem [Haykin,
1999]. A simple scheme for a neural network is
shown in Figure 2. Each circle denotes a computa-
tional element referred to as aneuron, which computes
a weighted sum of its inputs, and possibly performs a
nonlinear function on this sum. If certain classes of
nonlinear functions are used, the function computed
by the network can approximate any function (specif-

Figure 2: A schematic diagram of a
neural network. Each circle in the
hidden and output layer is a compu-
tational element known as a neuron.
(Figure taken from Yom-Tov [2004])

ically a mapping from the training patterns to the training targets), provided enough
neurons exist in the network and enough training examples are provided.

3.2 Large Margin Algorithms

Machine learning rests upon the theoretical foundation ofStatistical Learning Theory
[e.g. Vapnik, 1995] which provides conditions and guarantees for good generalization
of learning algorithms. Within the last decade,large margin classification techniques
have emerged as a practical result of the theory of generalization. Roughly speaking,
the margin is the distance of the example to the separation boundary and a large mar-
gin classifier generates decision boundaries with large margins to almost all training
examples. The two most widely studied classes of large margin classifiers areSupport
Vector Machines(SVMs) [Boser et al., 1992, Cortes and Vapnik, 1995] andBoosting
[Valiant, 1984, Schapire, 1992]:

Support Vector Machines work by mapping the training data into a feature space
by the aid of a so-called kernel function and then separating the data using alarge
margin hyperplane(cf. Algorithm 1). Intuitively, the kernel computes a similarity
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between two given examples. Most commonly used kernel functions areRBF kernels

k(x,x′) = exp
(
‖x−x′‖2

σ2

)
andpolynomial kernelsk(x,x′) = (x · x′)d.

The SVM finds a large margin separation between the training examples and pre-
viously unseen examples will often be close to the training examples. Hence, the large
margin then ensures that these examples are correctly classified as well, i.e., the deci-
sion rulegeneralizes. For so-calledpositive definitekernels, the optimization problem
can be solved efficiently and SVMs have an interpretation as a hyperplane separation
in a high dimensional feature space [Vapnik, 1995, Müller et al., 2001, Scḧolkopf and
Smola, 2002]. Support Vector Machines have been used on million dimensional data
sets and in other cases with more than a million examples [Mangasarian and Musi-
cant, 2001]. Research papers and implementations can be downloaded from the kernel
machines web-sitehttp://www.kernel-machines.org .

Algorithm 1 The Support Vector Machine with regularization parameterC.
Given labeled sequences(x1, y1), . . . , (xm, ym) (x ∈ X andy ∈ {−1,+1}) and a
kernelk, the SVM computes a function

f(s) =
m∑

i=1

αik(xi,x) + b,

where the coefficientsαi andb are found by solving the optimization problem

minimize
∑m

i,j=1 αiαjk(si, sj) + C
∑m

i=1 ξi

subject to yif(xi) ≥ 1− ξi

Boosting The basic idea of boosting andensemble learning algorithmsin general is
to iteratively combine relatively simplebase hypotheses– sometimes calledrules of
thumb– for the final prediction. One uses a so-calledbase learnerthat generates the
base hypotheses. In boosting the base hypotheses are linearly combined. In the case
of two-class classification, the final prediction is the weighted majority of the votes.
The combination of these simple rules can boost the performance drastically. It has
been shown that Boosting has strong ties to support vector machines and large margin
classification [R̈atsch, 2001, Meir and R̈atsch, 2003]. Boosting techniques have been
used on very high dimensional data sets and can quite easily deal with than hundred
thousands of examples. Research papers and implementations can be downloaded
from http://www.boosting.org .

4 Summary

Machine Learning research has been extremely active the last few years. The result
is a large number of very accurate and efficient algorithms that are quite easy to use
for a practitioner. It seems rewarding and almost mandatory for (computer) scientist
and engineers to learn how and where Machine Learning can help to automate tasks
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or provide predictions where humans have difficulties to comprehend large amounts
of data. The long list of examples where Machine Learning techniques were success-
fully applied includes: Text classification and categorization [e.g. Joachims, 2001] (for
instance spam filtering), network intrusion detection [e.g. Laskov et al., 2004], Bioin-
formatics (e.g. cancer tissue classification, gene finding; e.g. Furey et al. [2000], Zien
et al. [2000], Sonnenburg et al. [2002]), brain computer interfacing [e.g. Blankertz
et al., 2003], monitoring of electric appliances [e.g. Onoda et al., 2000], optimiza-
tion of hard disk caching strategies [e.g. Gramacy et al., 2003] and disk spin-down
prediction [e.g. Helmbold et al., 2000]), drug discovery [e.g. Warmuth et al., 2003]),
high-energy physics particle classification, recognition of hand writing, natural scene
analysis etc.

Obviously, in this brief summary I have to be far from being complete. I did not
mention regression algorithms (e.g. ridge regression, regression trees), unsupervised
learning algorithms (such as clustering, principle component analysis), reinforcement
learning, online learning algorithms or model-selection issues. Some of these tech-
niques extend the applicability of Machine Learning algorithms drastically and would
each require an introduction for them self. I would like to refer the interested reader
to two introductory books [Mendelson and Smola, 2003, von Luxburg et al., 2004]
which are the result of the last annual Summer Schools on Machine Learning (cf.
http://mlss.cc ).
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P. Laskov, C. Scḧafer, and I. Kotenko. Intrusion detection in unlabeled data with quarter-sphere

support vector machines. InProc. DIMVA, pages 71–82, 2004.
O.L. Mangasarian and D.R. Musicant. Lagrangian support vector machines.JMLR, 1:161–

177, March 2001.
R. Meir and G. R̈atsch. An introduction to boosting and leveraging. In S. Mendelson

and A. Smola, editors,Advanced Lectures on Machine Learning, LNAI, pages 119–184.
Springer, 2003.

S. Mendelson and A. Smola, editors.Advanced Lectures on Machine Learning, volume 2600
of LNAI. Springer, 2003.

S. Mika, G. R̈atsch, J. Weston, B. Schölkopf, A.J. Smola, and K.-R. M̈uller. Constructing
descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature
spaces.IEEE Transactions on Patterns Analysis and Machine Intelligence, 25(5):623–627,
May 2003.

K.-R. Müller, S. Mika, G. R̈atsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based
learning algorithms.IEEE Transactions on Neural Networks, 12(2):181–201, 2001.

T. Onoda, G. R̈atsch, and K.-R. M̈uller. A non-intrusive monitoring system for household
electric appliances with inverters. In H. Bothe and R. Rojas, editors,Proc. of NC’2000,
Berlin, 2000. ICSC Academic Press Canada/Switzerland.

J.R. Quinlan.C4.5: Programs for Machine Learning.Morgan Kaufmann, 1992.
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