
1/24/2018

1

Dr. Tom Way CSC 4700 1

User Interface Design
CSC 4700 Software Engineering

Why study user interfaces?
 Good UIs are critical to success

 UI programming is
 easy (sophisticated algorithms not required)

 straightforward (can immediately correct mistakes)

 fun (results are immediately visible)

 rational (apply simple rules)

 UI design is not graphic design

Cardinal axiom
 “A user interface is well-designed when the 

program behaves exactly how the user thought it 
would.” – Joel Spolsky
 user is happy = user in control = S/W correctly 

interprets user’s actions

 loss of control  depression, frustration

 All the other rules are just corollaries:
 Golden rules:  place user in control, reduce user’s 

memory load, make interface consistent 



1/24/2018

2

User and program models
 User model:  User’s idea of what’s happening

 Program model:  Program’s idea of what’s 
happening (i.e., what’s actually happening)

 Successful UI when program model corresponds to 
user model

 Speak user’s language

 Follow real-world conventions, make information 
appear in natural and logical order

 Use metaphors from real world

Example
 Pictures in documents are

 embedded in word processor (e.g., Word)

 not embedded in HTML (pix in separate files!)

 With WYSIWYG HTML editor (e.g., FrontPage), 
what do you do?

 change user model (describe in manual, explain with 
popup dialog box)

 change program model (make copy of picture in 
subfolder)

How do you get the user model?
 Ask the users!

 The 50-cent usability test

 Usually 5-6 people is enough, will start to see consensus

 Don’t need formal usability lab, or “people off the street”

 Just sketch or prototype and ask your neighbor



1/24/2018

3

User models are simple
 If your program model is nontrivial, it’s probably 

wrong

(“invisible sheets” in Excel)

Click here This window comes to top!

Choices
 “Every time you provide an option, you're asking 

the user to make a decision.” – Joel Spolsky

This is “unequivocally the most 

moronic ‘wizard’ dialog in the 

history of the Windows operating 

system. This dialog is so stupid 

that it deserves some kind of 

award. A whole new category of 

award.”

Too much freedom is dangerous

floating menu bar huge system tray

How many users want these?



1/24/2018

4

Metaphors

Also desktop, folders, paintbrush, ...

vs.

Affordance
afford – to make available or provide naturally

(door with metal plate affords pushing)

vs.

(30% usability) (100% usability)

Affordance (cont.)

Where to grab?

Where to click?

What to drag?



1/24/2018

5

Consistency, not creativity
 “A foolish consistency is the hobgoblin of little minds” –

Emerson
 Application should be consistent with itself and with other 

programs
 Examples:  FrontPage, Visio
 Beware of creativity:

 Less like user model
 More work to implement
 Do not leverage future/hidden features
 “Just because Microsoft does it, doesn't mean it's right”
 Examples:  Tab from name to password, Netscape’s 

reimplementation of common controls

Make explanations brief
 “Users don’t read the manual” – Spolsky 

 May not have the manual (on airplane, demo version)
 Too busy / distracted / impatient

 “Users don’t read anything” – Spolsky 
 advanced too busy
 novice hope defaults are ok
 in-between try to read but get confused

vs.

Many users are 
intimidated by computers

vs.

vs.

(no dialog)

Which is better for an intimidated user?



1/24/2018

6

Users can’t control the mouse well
 What’s the problem?

 sub-optimal pointing devices
 bad conditions (dirty, old, or cheap mouse; crowded desk)
 medical disabilities (young, old, arthritis, ...)
 in a hurry

 “Mile-high menu bar”
 Macintosh:  slam mouse to top, get menu
 Windows:  ½ by ¼-inch target

 Easiest places to point:  four corners
 (Windows 95 start menu blunder: 2 pixels from corner)

 Programmers generally stick to 0, 1, or n
 They want to avoid magic numbers (Why can you only open 20 windows?)
 But all n>1 are not equally likely 

(window close to edge should snap in place)

Don’t tax the user’s memory
 Make objects, actions, and options visible 
 User should not have to remember (too much) information 

Some bad designs

adaptive

menu

What principle

is being violated?

office

“assistant”



1/24/2018

7

The bell curve
 Users lie on a bell curve

 98% can use a TV

 70% can use Windows

 15% can use Linux

 1% can program

 Users are not dolts

 But, the easier you make the program, the more 
people can use it
(10% more usable  50% more users)

Activity-based UI
 Two ways of designing UI:

 What features should be there?
 Greeting card example:  add text, add picture, get predesigned card from 

library, send by email, print

 What activities will users do? 
 Greeting card example:  birthday greeting, party invitation, anniversary 

greeting
(leads to unexpected features:  remind to send next year)

 Example:
 Excel was designed for financial number-crunching, but many use it 

for lists
 Improv was to be “killer app” for NeXT

 great for complicated multi-dimensional financial models 
 painful for lists

Open-ended vs. sequential operation
 History of UI goes back-and-forth b/w

 user-in-control (command-line, Word, ...)

 sequential steps (wizards, ...)

vs.



1/24/2018

8

Visual perception

color-blind:

8% of men,

0.5% of women
[from Michael Black]

color 

constancy

font spacing:

Web-safe colors

216 can be reproduced on 

all displays (including 8-bit)

dithering may produce

other colors

Dangers of color

traffic light

is green

Driving at night in San Jose, where the street lights are yellow

traffic light

is yellow



1/24/2018

9

Beyond WIMP
 WIMP (windows, icons, menus, pointers)
 WYSIWYG is WYSIAYG
 Importance of language

 grouping, conditionals, referring to objects not 
immediately visible or future

 support novice and power-user
 provide concrete and abstract ways of manipulation
 keyboard shortcuts / macros

 Shared control
 Delegation of routine or complex tasks to computer

References

Joel Spolsky, User Interface Design for Programmers

abridged version available at 
http://www.joelonsoftware.com

Based on slides by Stan Birchfield, Clemson University


