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Refactoring
CSC 4700 Software Engineering

Lecture 4

Based on Fowler “Refactoring” and UWaterloo  slides
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Refactoring

• Basic metaphor:
• Start with an existing code base and make it better.

• Change the internal structure (in-the-small to in-the-medium) 
while preserving the overall semantics

• i.e., rearrange the “factors” but end up with the same final 
“product”

• The idea is that you should improve the code in some 
significant way. For example:
• Reducing near-duplicate code

• Improved cohesion, lessened coupling

• Improved parameterization, understandability, maintainability, 
flexibility, abstraction, efficiency, etc …

Dr. Tom Way CSC 4700 3

Some advice from Fowler

• “When should I refactor? How often? 

How much time should I dedicate to it?”

• It’s not something you should dedicate two weeks for every six 
months …

• … rather, you should do it as you develop!

• Refactor when you recognize a warning sign (a “bad smell”) and 
know what to do

• … when you add a function or method
• Likely it’s not an island unto itself

• … when you fix a bug
• Is the bug symptomatic of a design flaw?

• … when you do a code review
• A good excuse to re-evaluate your designs, share opinions.
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The rule of three (XP)

• The first time you code a task, just do it.

• The second time you code the same idea, wince and code it up 

again.

• The third time you code the same idea, it’s time to refactor! 

• Any programming construct can be made more abstract … but that’s 
not necessarily a good thing.

• Generality (flexibility) costs too

• Don’t spin you wheels designing and coding the most abstract system 
you can imagine.

• Practice Just-in-Time abstraction.

• Expect that you will be re-arranging your code constantly. Don’t worry 

about it. Embrace it.
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Bad smells in code

• Duplicated code

• “The #1 bad smell”

• Same expression in two methods in the same class?

• Make it a private ancillary routine and parameterize it 

(Extract method)

• Same code in two related classes?

• Push commonalities into closest mutual ancestor and parameterize

• Use template method DP for variation in subtasks

(Form template method)
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Bad smells in code

• Duplicated code

• Same code in two unrelated classes?

• Ought they be related?

• Introduce abstract parent (Extract class, Pull up method)

• Does the code really belongs to just one class?

• Make the other class into a client (Extract method)

• Can you separate out the commonalities into a subpart or a functor 
or other function object? 

• Make the method into a subobject of both classes.

• Strategy DP allows for polymorphic variation of methods-as-objects

(Replace method with method object)
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Bad smells in code

• Long method

• Often a sign of:

• Trying to do too many things

• Poorly thought out abstractions and boundaries

• Micromanagement anti-pattern

• Best to think carefully about the major tasks and how they inter-

relate.  Be aggressive!

• Break up into smaller private methods within the class

(Extract method)

• Delegate subtasks to subobjects that “know best” (i.e., template 
method DP)

(Extract class/method, Replace data value with object)

Dr. Tom Way CSC 4700 8

Bad smells in code

• Long method

• Fowler’s heuristic:

• When you see a comment, make a method.

• Often, a comment indicates:

• The next major step

• Something non-obvious whose details detract from the clarity of the 
routine as a whole.

• In either case, this is a good spot to “break it up”.
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Bad smells in code

• Large class

• i.e., too many different subparts and methods

• Two step solution:

1. Gather up the little pieces into aggregate subparts.

(Extract class, replace data value with object)

2. Delegate methods to the new subparts.

(Extract method)

• Likely, you’ll notice some unnecessary subparts that have 

been hiding in the forest!

• Resist the urge to micromanage the subparts!
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Bad smells in code

• Large class

• Counter example:

• Library classes often have large, fat interfaces (many methods, 
many parameters, lots of overloading)

• If the many methods exist for the purpose of flexibility, that’s OK in a 
library class.
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Bad smells in code

• Long parameter list

• Long parameter lists make methods difficult for clients to 
understand

• This is often a symptom of

• Trying to do too much

• … too far from home

• … with too many disparate subparts
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Bad smells in code

• Long parameter list

• In the old days, structured programming taught the use of 
parameterization as a cure for global variables.

• With modules/OOP, objects have mini-islands of state that can 
be reasonably treated as “global” to the methods (yet are still 
hidden from the rest of the program).

i.e., You don’t need to pass a subpart of yourself as a parameter to 
one of your own methods.
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Bad smells in code

• Long parameter list

• Solution:

• Trying to do too much?

• Break up into sub-tasks

(Extract method)

• … too far from home?

• Localize passing of parameters; don’t blithely pass down several 
layers of calls

(Preserve whole object, introduce parameter object)

• … with too many disparate subparts?

• Gather up parameters into aggregate subparts

• Your method interfaces will be much easier to understand!

(Preserve whole object, introduce parameter object)
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Bad smells in code

• Divergent change
• Occurs when one class is commonly changed in different ways 

for different reasons

• Likely, this class is trying to do too much and contains too many 
unrelated subparts

• Over time, some classes develop a “God complex”

• They acquires details/ownership of subparts that rightly belong 
elsewhere

• This is a sign of poor cohesion
• Unrelated elements in the same container

• Solution:
• Break it up, reshuffle, reconsider relationships and responsibilities 

(Extract class)
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Bad smells in code

• Shotgun surgery

• … the opposite of divergent change

• Each time you want to make a single, seemingly coherent 
change, you have to change lots of classes in little ways

• Also a classic sign of poor cohesion

• Related elements are not in the same container!

• Solution:

• Look to do some gathering, either in a new or existing class.

(Move method/field)



Dr. Tom Way CSC 4700 16

Bad smells in code

• Feature envy

• A method seems more interested in another class than the 
one it’s defined in

e.g., a method A::m() calls lots of get/set methods of class B

• Solution:

• Move m() (or part of it) into B!

(Move method/field, extract method)

• Exceptions:

• Visitor/iterator/strategy DP where the whole point is to decouple 
the data from the algorithm

• Feature envy is more of an issue when both A and B have interesting 

data 
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Bad smells in code

• Data clumps

• You see a set of variables that seem to “hang out” together

e.g., passed as parameters, changed/accessed at the same time

• Usually, this means that there’s a coherent subobject just 
waiting to be recognized and encapsulated

void Scene::setTitle (string titleText, 

int titleX, int titleY, 

Colour titleColour){…}

void Scene::getTitle (string& titleText, 

int& titleX, int& titleY, 

Colour& titleColour){…}
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Bad smells in code

• Data clumps

• In the example, a Title class is dying to be born

• If a client knows how to change a title’s x, y, text, and colour, 
then it knows enough to be able to “roll its own” Title objects.

• However, this does mean that the client now has to talk to another class.

• This will greatly shorten and simplify your parameter lists (which aids 
understanding) and makes your class conceptually simpler too.

• Moving the data may create feature envy initially

• May have to iterate on the design until it feels right.

(Preserve whole object, extract class, introduce parameter object)
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Bad smells in code

• Primitive obsession
• All subparts of an object are instances of primitive types

(int, string, bool, double, etc.)

e.g., dates, currency, SIN, tel.#, ISBN, special string values

• Often, these small objects have interesting and non-trivial 
constraints that can be modelled

e.g., fixed number of digits/chars, check digits, special values

• Solution:

• Create some “small classes” that can validate and enforce the 
constraints.
• This makes your system mode strongly typed.

(Replace data value with object, extract class, introduce 
parameter object)
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Bad smells in code

• Switch statements

• We saw this before; here’s Fowler’s example:

Double getSpeed () {

switch (_type) {

case EUROPEAN:

return getBaseSpeed();

case AFRICAN:

return getBaseSpeed() –

getLoadFactor() * _numCoconuts;

case NORWEGIAN_BLUE:

return (_isNailed) ? 0 

: getBaseSpeed(_voltage);

}

}
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Bad smells in code

• Switch statements

• This is an example of a lack of understanding polymorphism 
and a lack of encapsulation.

• Solution:

• Redesign as a polymorphic method of PythonBird

(Replace conditional with polymorphism, replace type code with 
subclasses)
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Bad smells in code

• Lazy class

• Classes that doesn’t do much that’s different from other 
classes.

• If there are several sibling classes that don’t exhibit 
polymorphic behavioural differences , the consider just 
collapsing them back into the parent and add some 

parameters

• Often, lazy classes are legacies of ambitious design or a 
refactoring that gutted the class of interesting behaviour

(Collapse hierarchy, inline class)
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Bad smells in code

• Speculative generality

• “We might need this one day …”

• Fair enough, but did you really need it after all?

• Extra classes and features add to complexity.

• XP philosophy:

• “As simple as possible but no simpler.”

• “Rule of three”.

• Keep in mind that refactoring is an ongoing process.

• If you really do need it later, you can add it back in.

(Collapse hierarchy, inline class, remove parameter)
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Bad smells in code

• Message chains

• Client asks an object which asks a subobject, which asks a 
subobject, …

• Multi-layer “drill down” may result in sub-sub-sub-objects being 
passed back to requesting client.

• Sounds like the client already has an understanding of the 

structure of the object,even if it is going through appropriate 
intermediaries.

• Probably need to rethink abstraction … 

• Why is a deeply nested subpart surfacing?

• Why is the subpart so simple that it’s useful far from home?

(Hide delegate)
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Bad smells in code

• Middle man

• “All hard problems in software engineering can be solved by 
an extra level of indirection.”

• OODPs pretty well all boil down to this, albeit in quite clever and 
elegant ways.

• If you notice that many of a class’s methods just turn around 

and beg services of delegate subobjects, the basic abstraction 
is probably poorly thought out.

• An object should be more than the some of its parts in terms 
of behaviours!

(Remove middle man, replace delegation with inheritance) 
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Bad smells in code

• Inappropriate intimacy

• Sharing of secrets between classes, esp. outside of the holy bounds 
of inheritance

e.g., public variables, indiscriminate definitions of get/set methods, C++ 
friendship, protected data in classes

• Leads to data coupling, intimate knowledge of internal structures 
and implementation decisions.

• Makes clients brittle, hard to evolve, easy to break.

• Solution:
• Appropriate use of get/set methods

• Rethink basic abstraction.

• Merge classes if you discover “true love”

(Move/extract method/field, change bidirectional association to 
unidirectional, hide delegate)
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Bad smells in code

• Alternative classes with different interfaces

• Classes/methods seem to implement the same or similar 
abstraction yet are otherwise unrelated.

• This is not a knock against overloading, just haphazard design.

• Solution:

• Move the classes “closer” together.

• Find a common interface, perhaps an ABC.

• Find a common subpart and remove it.

(Extract [super]class, move method/field, rename method)
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Bad smells in code

• Data class

• Class consists of (simple) data fields and simple accessor/mutator 
methods only.

• Often, you’ll find that clients of this class are using get/set methods just 
like the micromanager anti-pattern (albeit via a level of indirection).

• Solution:
• Have a look at usage patterns in the clients

• Try to abstract some commonalities of usage into methods of the data 
class and move some functionality over

• My own view is that data classes are quite reasonable, if used 
judiciously.

• In C++, often use structs to model data classes.

• “Data classes are like children.  They are OK as a starting point, but 
to participate as a grownup object, they need to take on some 
responsibility.”

(Extract/move method) 

Dr. Tom Way CSC 4700 29

Bad smells in code

• Refused bequest
• Subclass inherits methods/variables but doesn’t seem to use 

some of them.

• In a sense, this might be a good sign:
• The parent manages the commonalities and the child manages the 

differences.

• Might want to look at typical client use to see if clients think child 
is-a parent
• Do clients use parent’s methods? … use parent as static type?

• Did the subclass inherit as a cheap pickup of functionality?

• Fowler/Beck claim this isn’t as bad a smell as the others … 

• Might be better to use delegation
(Replace inheritance with delegation)
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Bad smells in code

• Refused bequest

• Another perspective:

• Parent has features that are used by only some of its children.

• Typical solution is to create some more intermediate abstract 
classes in the hierarchy.  

• Move the peculiar methods down a level.

(Push down field/method)


