
Dr. Tom Way CSC 4700 1

Refactoring
CSC 4700 Software Engineering

Lecture 4

Based on Fowler “Refactoring” and UWaterloo slides

Dr. Tom Way CSC 4700 2

Refactoring

• Basic metaphor:
• Start with an existing code base and make it better.

• Change the internal structure (in-the-small to in-the-medium)
while preserving the overall semantics

• i.e., rearrange the “factors” but end up with the same final
“product”

• The idea is that you should improve the code in some
significant way. For example:
• Reducing near-duplicate code

• Improved cohesion, lessened coupling

• Improved parameterization, understandability, maintainability,
flexibility, abstraction, efficiency, etc …

Dr. Tom Way CSC 4700 3

Some advice from Fowler

• “When should I refactor? How often?

How much time should I dedicate to it?”

• It’s not something you should dedicate two weeks for every six
months …

• … rather, you should do it as you develop!

• Refactor when you recognize a warning sign (a “bad smell”) and
know what to do

• … when you add a function or method
• Likely it’s not an island unto itself

• … when you fix a bug
• Is the bug symptomatic of a design flaw?

• … when you do a code review
• A good excuse to re-evaluate your designs, share opinions.

Dr. Tom Way CSC 4700 4

The rule of three (XP)

• The first time you code a task, just do it.

• The second time you code the same idea, wince and code it up

again.

• The third time you code the same idea, it’s time to refactor!

• Any programming construct can be made more abstract … but that’s
not necessarily a good thing.

• Generality (flexibility) costs too

• Don’t spin you wheels designing and coding the most abstract system
you can imagine.

• Practice Just-in-Time abstraction.

• Expect that you will be re-arranging your code constantly. Don’t worry

about it. Embrace it.

Dr. Tom Way CSC 4700 5

Bad smells in code

• Duplicated code

• “The #1 bad smell”

• Same expression in two methods in the same class?

• Make it a private ancillary routine and parameterize it

(Extract method)

• Same code in two related classes?

• Push commonalities into closest mutual ancestor and parameterize

• Use template method DP for variation in subtasks

(Form template method)

Dr. Tom Way CSC 4700 6

Bad smells in code

• Duplicated code

• Same code in two unrelated classes?

• Ought they be related?

• Introduce abstract parent (Extract class, Pull up method)

• Does the code really belongs to just one class?

• Make the other class into a client (Extract method)

• Can you separate out the commonalities into a subpart or a functor
or other function object?

• Make the method into a subobject of both classes.

• Strategy DP allows for polymorphic variation of methods-as-objects

(Replace method with method object)

Dr. Tom Way CSC 4700 7

Bad smells in code

• Long method

• Often a sign of:

• Trying to do too many things

• Poorly thought out abstractions and boundaries

• Micromanagement anti-pattern

• Best to think carefully about the major tasks and how they inter-

relate. Be aggressive!

• Break up into smaller private methods within the class

(Extract method)

• Delegate subtasks to subobjects that “know best” (i.e., template
method DP)

(Extract class/method, Replace data value with object)

Dr. Tom Way CSC 4700 8

Bad smells in code

• Long method

• Fowler’s heuristic:

• When you see a comment, make a method.

• Often, a comment indicates:

• The next major step

• Something non-obvious whose details detract from the clarity of the
routine as a whole.

• In either case, this is a good spot to “break it up”.

Dr. Tom Way CSC 4700 9

Bad smells in code

• Large class

• i.e., too many different subparts and methods

• Two step solution:

1. Gather up the little pieces into aggregate subparts.

(Extract class, replace data value with object)

2. Delegate methods to the new subparts.

(Extract method)

• Likely, you’ll notice some unnecessary subparts that have

been hiding in the forest!

• Resist the urge to micromanage the subparts!

Dr. Tom Way CSC 4700 10

Bad smells in code

• Large class

• Counter example:

• Library classes often have large, fat interfaces (many methods,
many parameters, lots of overloading)

• If the many methods exist for the purpose of flexibility, that’s OK in a
library class.

Dr. Tom Way CSC 4700 11

Bad smells in code

• Long parameter list

• Long parameter lists make methods difficult for clients to
understand

• This is often a symptom of

• Trying to do too much

• … too far from home

• … with too many disparate subparts

Dr. Tom Way CSC 4700 12

Bad smells in code

• Long parameter list

• In the old days, structured programming taught the use of
parameterization as a cure for global variables.

• With modules/OOP, objects have mini-islands of state that can
be reasonably treated as “global” to the methods (yet are still
hidden from the rest of the program).

i.e., You don’t need to pass a subpart of yourself as a parameter to
one of your own methods.

Dr. Tom Way CSC 4700 13

Bad smells in code

• Long parameter list

• Solution:

• Trying to do too much?

• Break up into sub-tasks

(Extract method)

• … too far from home?

• Localize passing of parameters; don’t blithely pass down several
layers of calls

(Preserve whole object, introduce parameter object)

• … with too many disparate subparts?

• Gather up parameters into aggregate subparts

• Your method interfaces will be much easier to understand!

(Preserve whole object, introduce parameter object)

Dr. Tom Way CSC 4700 14

Bad smells in code

• Divergent change
• Occurs when one class is commonly changed in different ways

for different reasons

• Likely, this class is trying to do too much and contains too many
unrelated subparts

• Over time, some classes develop a “God complex”

• They acquires details/ownership of subparts that rightly belong
elsewhere

• This is a sign of poor cohesion
• Unrelated elements in the same container

• Solution:
• Break it up, reshuffle, reconsider relationships and responsibilities

(Extract class)

Dr. Tom Way CSC 4700 15

Bad smells in code

• Shotgun surgery

• … the opposite of divergent change

• Each time you want to make a single, seemingly coherent
change, you have to change lots of classes in little ways

• Also a classic sign of poor cohesion

• Related elements are not in the same container!

• Solution:

• Look to do some gathering, either in a new or existing class.

(Move method/field)

Dr. Tom Way CSC 4700 16

Bad smells in code

• Feature envy

• A method seems more interested in another class than the
one it’s defined in

e.g., a method A::m() calls lots of get/set methods of class B

• Solution:

• Move m() (or part of it) into B!

(Move method/field, extract method)

• Exceptions:

• Visitor/iterator/strategy DP where the whole point is to decouple
the data from the algorithm

• Feature envy is more of an issue when both A and B have interesting

data

Dr. Tom Way CSC 4700 17

Bad smells in code

• Data clumps

• You see a set of variables that seem to “hang out” together

e.g., passed as parameters, changed/accessed at the same time

• Usually, this means that there’s a coherent subobject just
waiting to be recognized and encapsulated

void Scene::setTitle (string titleText,

int titleX, int titleY,

Colour titleColour){…}

void Scene::getTitle (string& titleText,

int& titleX, int& titleY,

Colour& titleColour){…}

Dr. Tom Way CSC 4700 18

Bad smells in code

• Data clumps

• In the example, a Title class is dying to be born

• If a client knows how to change a title’s x, y, text, and colour,
then it knows enough to be able to “roll its own” Title objects.

• However, this does mean that the client now has to talk to another class.

• This will greatly shorten and simplify your parameter lists (which aids
understanding) and makes your class conceptually simpler too.

• Moving the data may create feature envy initially

• May have to iterate on the design until it feels right.

(Preserve whole object, extract class, introduce parameter object)

Dr. Tom Way CSC 4700 19

Bad smells in code

• Primitive obsession
• All subparts of an object are instances of primitive types

(int, string, bool, double, etc.)

e.g., dates, currency, SIN, tel.#, ISBN, special string values

• Often, these small objects have interesting and non-trivial
constraints that can be modelled

e.g., fixed number of digits/chars, check digits, special values

• Solution:

• Create some “small classes” that can validate and enforce the
constraints.
• This makes your system mode strongly typed.

(Replace data value with object, extract class, introduce
parameter object)

Dr. Tom Way CSC 4700 20

Bad smells in code

• Switch statements

• We saw this before; here’s Fowler’s example:

Double getSpeed () {

switch (_type) {

case EUROPEAN:

return getBaseSpeed();

case AFRICAN:

return getBaseSpeed() –

getLoadFactor() * _numCoconuts;

case NORWEGIAN_BLUE:

return (_isNailed) ? 0

: getBaseSpeed(_voltage);

}

}

Dr. Tom Way CSC 4700 21

Bad smells in code

• Switch statements

• This is an example of a lack of understanding polymorphism
and a lack of encapsulation.

• Solution:

• Redesign as a polymorphic method of PythonBird

(Replace conditional with polymorphism, replace type code with
subclasses)

Dr. Tom Way CSC 4700 22

Bad smells in code

• Lazy class

• Classes that doesn’t do much that’s different from other
classes.

• If there are several sibling classes that don’t exhibit
polymorphic behavioural differences , the consider just
collapsing them back into the parent and add some

parameters

• Often, lazy classes are legacies of ambitious design or a
refactoring that gutted the class of interesting behaviour

(Collapse hierarchy, inline class)

Dr. Tom Way CSC 4700 23

Bad smells in code

• Speculative generality

• “We might need this one day …”

• Fair enough, but did you really need it after all?

• Extra classes and features add to complexity.

• XP philosophy:

• “As simple as possible but no simpler.”

• “Rule of three”.

• Keep in mind that refactoring is an ongoing process.

• If you really do need it later, you can add it back in.

(Collapse hierarchy, inline class, remove parameter)

Dr. Tom Way CSC 4700 24

Bad smells in code

• Message chains

• Client asks an object which asks a subobject, which asks a
subobject, …

• Multi-layer “drill down” may result in sub-sub-sub-objects being
passed back to requesting client.

• Sounds like the client already has an understanding of the

structure of the object,even if it is going through appropriate
intermediaries.

• Probably need to rethink abstraction …

• Why is a deeply nested subpart surfacing?

• Why is the subpart so simple that it’s useful far from home?

(Hide delegate)

Dr. Tom Way CSC 4700 25

Bad smells in code

• Middle man

• “All hard problems in software engineering can be solved by
an extra level of indirection.”

• OODPs pretty well all boil down to this, albeit in quite clever and
elegant ways.

• If you notice that many of a class’s methods just turn around

and beg services of delegate subobjects, the basic abstraction
is probably poorly thought out.

• An object should be more than the some of its parts in terms
of behaviours!

(Remove middle man, replace delegation with inheritance)

Dr. Tom Way CSC 4700 26

Bad smells in code

• Inappropriate intimacy

• Sharing of secrets between classes, esp. outside of the holy bounds
of inheritance

e.g., public variables, indiscriminate definitions of get/set methods, C++
friendship, protected data in classes

• Leads to data coupling, intimate knowledge of internal structures
and implementation decisions.

• Makes clients brittle, hard to evolve, easy to break.

• Solution:
• Appropriate use of get/set methods

• Rethink basic abstraction.

• Merge classes if you discover “true love”

(Move/extract method/field, change bidirectional association to
unidirectional, hide delegate)

Dr. Tom Way CSC 4700 27

Bad smells in code

• Alternative classes with different interfaces

• Classes/methods seem to implement the same or similar
abstraction yet are otherwise unrelated.

• This is not a knock against overloading, just haphazard design.

• Solution:

• Move the classes “closer” together.

• Find a common interface, perhaps an ABC.

• Find a common subpart and remove it.

(Extract [super]class, move method/field, rename method)

Dr. Tom Way CSC 4700 28

Bad smells in code

• Data class

• Class consists of (simple) data fields and simple accessor/mutator
methods only.

• Often, you’ll find that clients of this class are using get/set methods just
like the micromanager anti-pattern (albeit via a level of indirection).

• Solution:
• Have a look at usage patterns in the clients

• Try to abstract some commonalities of usage into methods of the data
class and move some functionality over

• My own view is that data classes are quite reasonable, if used
judiciously.

• In C++, often use structs to model data classes.

• “Data classes are like children. They are OK as a starting point, but
to participate as a grownup object, they need to take on some
responsibility.”

(Extract/move method)

Dr. Tom Way CSC 4700 29

Bad smells in code

• Refused bequest
• Subclass inherits methods/variables but doesn’t seem to use

some of them.

• In a sense, this might be a good sign:
• The parent manages the commonalities and the child manages the

differences.

• Might want to look at typical client use to see if clients think child
is-a parent
• Do clients use parent’s methods? … use parent as static type?

• Did the subclass inherit as a cheap pickup of functionality?

• Fowler/Beck claim this isn’t as bad a smell as the others …

• Might be better to use delegation
(Replace inheritance with delegation)

Dr. Tom Way CSC 4700 30

Bad smells in code

• Refused bequest

• Another perspective:

• Parent has features that are used by only some of its children.

• Typical solution is to create some more intermediate abstract
classes in the hierarchy.

• Move the peculiar methods down a level.

(Push down field/method)

