
Dr. Tom Way CSC 4700 1

Design Patterns & Anti-Patterns
CSC 4700 Software Engineering

SE, Design, Hans

van Vliet, ©2008 2

Patterns

• Provide solutions to recurring
problems

• Balance sets of opposing forces

• Document well-proven design experience

• Abstraction above level of a single component

• Provide common vocabulary and understanding

• Are a means of documentation

• Support software devel with desirable properties

Purpose

• A design pattern captures design expertise –
patterns are not created from thin air, but
abstracted from existing design examples

• Using design patterns is reuse of design
expertise

• Studying design patterns is a way of studying
how the “experts” do design

• Design patterns provide a vocabulary for
talking about design

Why design patterns in SA?

• If you’re a software engineer, you should
know about them anyway

• Design Patterns help you break out of first-
generation OO thought patterns

The seven layers of architecture
*

Global architecture

Enterprise architecture

System architecture

Application architecture

Macro-architecture

Micro-architecture

Objects

* Mowbray and Malveau

ORB

OO architecture

Frameworks

Subsystem

Design patterns

OO programming

How patterns arise

Problem

Solution

Benefits

Related Patterns

Consequences

Forces

Structure of a pattern

• Name

• Intent

• Motivation

• Applicability

• Structure

• Consequences

• Implementation

• Known Uses

• Related Patterns

Key patterns

• The following patterns are considered to be a
good “basic” set of design patterns

• Competence in recognizing and applying
these patterns will improve your design skills

Composite

Component

Operation()

Add(Component)

Remove(Component)

Composite

Operation()

Add(Component)

Remove(Component)

Leaf

Operation()

Client

children

0..*

For all c in children

c.Operation();

• Construct part-whole hierarchy
• Simplify client interface to leaves/composites

• Easier to add new kinds of components

Composite (2)

Figure

paint()

translate()

getBounds()

CompositeFigure

paint()

addFigure(Figure))

removeFigure(Figure))

BasicFigure

paint()

View
children

0..*

For all c in children

c.paint();

• Example: figures in a structured graphics toolkit

LabelFigure

paint()

0..*

Controller

parent

Adapter

• You have
• legacy code

• current client

• Adapter changes interface of legacy code so
client can use it

• Adapter fills the gap b/w two interfaces

• No changes needed for either
• legacy code, or

• client

Adapter (2)

class NewTime

{

public:

int GetTime() {

return m_oldtime.get_time() * 1000 + 8;

}

private:

OldTime m_oldtime;

};

Command

• You have commands that need to be
• executed,

• undone, or

• queued

• Command design pattern separates
• Receiver from Invoker from Commands

• All commands derive from Command and
implement do(), undo(), and redo()

Facade

• Provide unified interface to interfaces within a subsystem
• Shield clients from subsystem components

• Promote weak coupling between client and subsystem
components

Facade

Client

Facade (2)

Entity

CompositeEntityAtomicEntity

PortRelation

BufferedRelation

Graph

SchematicEditor

• Example: graph interface to a simulation engine

Actor

Director

0..*
2

Token

Proxy

• You want to

• delay expensive computations,

• use memory only when needed, or

• check access before loading an object into memory

• Proxy
• has same interface as Real object

• stores subset of attributes

• does lazy evaluation

Strategy

Strategy

Operation()

ConcreteStrategy2

Operation()

Context

• Make algorithms interchangeable---”changing the guts”
• Alternative to subclassing

• Choice of implementation at run-time

• Increases run-time complexity

ContextInterface()

ConcreteStrategy1

Operation()

Strategy (2)

ConnectorRouter

Shape recalculate(Pt, Pt)

ArcRouter

Shape recalculate(Pt, Pt)

Connector

route()

StraightRouter

Shape recalculate(Pt, Pt)

ManhattanRouter

Shape recalculate(Pt, Pt)

shape=router.recalculate(start,end);

redraw(shape);

• Example: drawing different connector styles

Bridge

• You

• have several different implementations

• need to choose one, possibly at run time

• Bridge
• decouples interface from implementation

• shields client from implementations

• Abstraction creates and initializes the
ConcreteImplementations

• Example: stub code, slow code, optimized code

Bridge (2)

Client

Implementor

Refined

Abstraction

Concrete

ImplementorA

Concrete

ImplementorB

Abstraction

Observer

• Many-to-one dependency between objects
• Use when there are two or more views on the same “data”

• aka “Publish and subscribe” mechanism

• Choice of “push” or “pull” notification styles

Observer

update()

Subject

attach(Observer)

detach(Observer)

notify()

ConcreteObserver

update()

ConcreteSubject

getState()

state=subject.getState();

forall o in observers

o.update()

22

Model-View-Controller (MVC)

• Objective: Separation between information,
presentation and user interaction.

• When a model object value changes, a
notification is sent to the view and to the
controller.

• Thus, the view can update itself and the controller
can modify the view if its logic so requires.

• When handling input from the user the
windowing system sends the user event to the
controller.

• If a change is required, the controller updates the
model object.

23

Model-View-Controller

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Factory Method

Creator

Product createProduct()

Product

• Defer object instantiation to subclasses
• Eliminates binding of application-specific subclasses

• Connects parallel class hierarchies

• A related pattern is AbstractFactory

operation()

ConcreteCreator

Product createProduct()

ConcreteProduct

operation()

return new ConcreteProduct();

Factory Method (2)

• Example: creating manipulators on connectors

Figure

createManipulator()

0..1
Manipulator

attach(Figure)

ArcManipulator

attach(Figure)

BoundsManipulator

attach(Figure)

Connector

createManipulator()

RectFigure

createManipulator()

manip = new BoundsManipulator();

manip = new ArcManipulator();

Interactor

Chain of Responsibility

Handler

handleRequest()

ConcreteHandler2

handleRequest()

Client

ContextInterface()

ConcreteHandler1

handleRequest()

• Decouple sender of a request from receiver
• Give more than one object a chance to handle

• Flexibility in assigning responsibility

• Often applied with Composite

successor

Chain of Responsibility (2)

Figure

handleEvent(Event)

CompositeFigure

Interactor
children

0..*

If interactor != null

interactor.handle(event,this)

else

parent.handleEvent(event)

0..1

parent

• Example: handling events in a graphical hierarchy

handle(Event,Figure)

0..*

Patterns vs “Design”

• Patterns are design
• But: patterns transcend the “identify classes and

associations” approach to design

• Instead: learn to recognize patterns in the
problem space and translate to the solution

• Patterns can capture OO design principles
within a specific domain

• Patterns provide structure to “design”

Patterns vs Frameworks

• Patterns are lower-level than frameworks

• Frameworks typically employ many patterns:

• Factory

• Strategy

• Composite

• Observer

• Done well, patterns are the “plumbing” of a
framework

Dr. Tom Way CSC 4700 30

Anti-Patterns
CSC 4700 Software Engineering

Auntie Patterns

Dr. Tom Way CSC 4700 31

Aunt “Patt”

Ant Tea Patterns

Dr. Tom Way CSC 4700 32

SE, Design, Hans

van Vliet, ©2008 33

Anti-Patterns and Bad Smells

• Patterns describe desirable behavior

• Anti-patterns describe situations one had
better avoid

• Refactoring is applied whenever an anti-
pattern has been introduced

• Bad smells occur when something in your
design seems “fishy”

• They are not necessarily indications of problems

SE, Design, Hans

van Vliet, ©2008 34

Example anti-patterns

• God class: class that holds most responsibilities (also
called The Blob)

• Lava flow: dead code

• Poltergeist: class with few responsibilities and a short
life

• Golden Hammer: solution that does not fit the problem

• Stovepipe: (almost) identical solutions at different places

• Swiss Army Knife: excessively complex class interface

AntiAnti

More example anti-patterns

• Singletonitis – over-use of the singleton pattern

• Sequential coupling – requires methods to be called in particular

order

• Object orgy – failing to properly encapsulate objects permitting
unrestricted access to their internals

• Blind faith – neglecting to test error returns from methods

• Loop-switch sequence – implementing sequential code as a loop

statement, i.e. first time through do A, second time do B etc, rather

than doA(); doB();

• Magic numbers/strings – unexplained number/string values in
code

The Blob

The Blob

Golden Hammer

I have a hammer and everything else is a nail

Spaghetti Code

Cut−And−Paste Programming

“Man, you guys work fast. Over 400,000 lines
of code in three weeks is outstanding
progress!”

“Hey, I thought you fixed that bug already, so
why is it doing this again?”

