
Dr. Tom Way CSC 4700 1

Code Reviews & Inspections
CSC 4700 Software Engineering

Software inspections

• These involve people examining the source 
representation with the aim of discovering anomalies 
and defects.

• Inspections not require execution of a system so may be 
used before implementation.

• They may be applied to any representation of the 
system (requirements, design, configuration data, test 
data, etc.).

• They have been shown to be an effective technique for 
discovering program errors.

Inspection success

• Many different defects may be discovered in a 
single inspection. In testing, one defect ,may 
mask another so several executions are 
required.

• They reuse domain and programming 
knowledge so reviewers are likely to have seen 
the types of error that commonly arise.



Inspections and testing

• Inspections and testing are complementary and not 
opposing verification techniques.

• Both should be used during the V & V process.

• Inspections can check conformance with a specification 
but not conformance with the customer’s real 
requirements.

• Inspections cannot check non-functional characteristics 
such as performance, usability, etc.

Program inspections

• Formalized approach to document reviews

• Intended explicitly for defect detection (not 
correction).

• Defects may be logical errors, anomalies in the 
code that might indicate an erroneous condition 
(e.g. an uninitialized variable) or non-
compliance with standards.

Inspection pre-conditions

• A precise specification should be available.

• Team members must be familiar with the 
organization standards.

• Syntactically correct code or other system 
representations must be available. 

• An error checklist should be prepared.



The inspection process

Inspection procedure

• System overview presented to inspection team.

• Code and associated documents are 
distributed to inspection team in advance.

• Inspection takes place and discovered errors 
are noted.

• Modifications are made to repair discovered 
errors.

• Re-inspection may or may not be required.

Inspection roles (formal)

Author or owner The programmer or designer responsible fo r

producing the program or document. Responsible

for fixing defects discovered during the inspection

process.

Inspector Finds errors, omissions and inconsistencies in

programs and documents. May also identify

broader issues that are outside the scope of the

inspection team.

Reader Presents the code or document at an inspection

meeting.

Scribe Records the results of the inspection meeting.

Chairman or moderator Manages the process and facilitates the inspection.

Reports process results to the Chief moderator.

Chief moderator Responsible for inspection process improvements,

checklist updating, standards development etc.



Inspection checklists

• Checklist of common errors should be used to 
drive the inspection.

• Error checklists are programming language 
dependent and reflect the characteristic errors that are 
likely to arise in the language.

• In general, the 'weaker' the type checking, the larger 
the checklist.

• Examples: Initialization, constant naming, loop 
termination, array bounds, formatting, etc.

Inspection checks 1

Data faults Are all program variables initialised before their values are

used?

Have all constants been named?

Should the upper bound of arrays be equal to the size of the

array or Size -1?

If character strings are used, is a de limiter explicitly

assigned?

Is there any possibility of buffer overflow?

Control faults For each conditional statement, is the condition correct?

Is each loop certain to terminate?

Are compound statements correctly bracketed?

In case statements, are all possible cases accounted for?

If a break is required after each case in case statements, has

it been included?

Input/output faults Are all input variables used?

Are all output variables assigned a value before they are

output?

Can unexpected inputs cause corruption?

Inspection checks 2

Interface faults Do all function and method calls have the correct number

of parameters?

Do fo rmal and actual parameter types match?

Are the parameters in the right order?

If components access shared memory, do they have the

same model of the shared memory structure?

Storage

management faults

If a linked structure is modified, have all links been

correctly reassigned?

If dynamic storage is used, has space been allocated

correctly?

Is space explicitly de-allocated after it is no longer

required?

Exception

management faults

Have all possible error conditions been taken into account?



Inspection rate

• 500 statements/hour during overview.

• 125 source statement/hour during individual 
preparation.

• 90-125 statements/hour can be inspected.

• Inspection is therefore an expensive process.

Automated static analysis

• Static analyzers are software tools for source 
text processing. (example: Lint)

• They parse the program text and try to discover 
potentially erroneous conditions and bring these 
to the attention of the V & V team.

• They are very effective as an aid to inspections -
they are a supplement to but not a replacement 
for inspections.


