
Dr. Way's Tips for Software Engineers 
 

An incomplete collection of rules-of-thumb for the software engineer gleaned from life experience. 

 

Be good to the gatekeeper 

The office manager or project secretary holds 

the key to making your life easier at work. 

Remembering that this person is often the 

hardest working and least-appreciated member 

of the team, and recognizing the hard work and 

offering appreciation will go a long way. 

Always have an answer 

When asked "how long will it take", never say 

"I'm not sure." Say something, anything... 

"three weeks, assuming everything goes well" 

has always worked for me. 

Help the team 

If a fellow engineer or programmer is stuck 

trying to fix a resistant bug in their code, offer 

an extra set of eyes. If they are moving next 

weekend, see if they could use help carrying 

boxes. 

Adjust your thinking 

Unlike the familiar and comforting 3-4 month 

semester cycle in the world of academia, the 

world of software engineering has no such real 

pattern. Even though there are releases of new 

versions of software periodically, even 

frequently if you work in an Agile 

environment, in reality there is a continuing, 

day-to-day, sameness that takes some getting 

used to for many people. Prepare yourself 

mentally to expect very few definite finishing 

points and you will do yourself a huge favor. 

Become a programming language polyglot 

Learn as many languages as you can: C, C++, 

Java, Perl, Php, Html, Basic, Visual Basic, shell 

scripts, etc. The more you know, the more 

valuable you will be both as a programmer and 

eventually as a manager. Spend a couple 

minutes once in awhile trying out something 

new. 

Be an ethical thief 

The Internet is an amazingly rich resource for 

ideas and examples, offered up for free and 

judicious use by you! Before "re-inventing the 

wheel," spend a little time seeing what 

solutions already exist for the problem you are 

trying to solve. It will save you an enormous 

amount of time and energy in the long run, 

even if the example code you find is mostly 

junk. Be sure to play nicely, and give credit 

(and payment) when it is due. 

Communicate meaningfully 

A quick email reporting your latest progress to 

the project leader and your fellow engineers 

can be the glue that holds the project together. 

If everybody has at least a general idea of what 

everybody else is working on, the team can 

function better and the result will be better for 

all. Resist the urge to pile on in email flame-

wars. I have never seen any progress come of 

it. 

Take a walk after lunch 

No matter what else is going on, taking a walk 

right after lunch will benefit you and the 

overall project immeasurably. If you run or 

bike or workout, that's good, too. Remaining in 

good health will carry you through the days 

when you can't stand the current task you've 

been assigned. 

Test early, test often 

From the first line of code you write, constantly 

test it. Look at it. Judge it. Write a small test 

program. The old saying "A stitch in time saves 

nine" applies directly to software development 

and engineering. A small mistake now, left 

unrepaired, can lead to major headaches later. 

By constantly keeping your code in good shape 

you'll put yourself in the best possible position. 

Test -driven development? Even better. 



You will eventually like it 

Even if you hate what you are doing right now 

(and this will probably happen at some point), I 

have discovered that if you work on it long 

enough (6 months to a year) you will start to 

enjoy it a little, and then more and more. 

Eventually, when the project ends and a new 

one begins, you will look back with some 

nostalgia about how much you liked working 

on that project you hated, and especially how 

much you will miss the people you worked 

with. 

Specify, but not yet 

A well-written specification is a wonderful 

thing that can lead to very solid software. But it 

is hard to get motivated to write it down first. 

So, first create a little prototype. Write a little 

program. Add to it. Show it off. Then jot down 

some ideas about it. Program some more. Write 

some more. Eventually you'll get to the point 

where you can envision most of the finished 

product from the little prototypes you have 

created, and it'll be much easier to write it all 

down. Be Agile. 

Accept that you will carry the load 

There will be times when you are the expert, 

and where some of your fellow engineers are 

little more than programming dinosaurs. This 

will happen, and there is nothing you can do to 

avoid it. Forge ahead, carry the load. One day 

you might discover that you are now the 

dinosaur and that new person is the whiz-kid. 

Bring your lunch 

A bag lunch is cheaper and healthier. You're 

going to make a lot of money as a software 

engineer. Why waste it on junk food? And why 

not be around longer to enjoy it? 

Practice hiding your goofing-off 

Get good at appearing instantly busy. You 

know how hard you have been working all 

morning, and how you just need 5 minutes to 

read CNN or check Facebook. You are actually 

more productive if you DO take little mental-

health breaks like that. But getting caught 

doing it by the wrong person can be bad. So, 

always have your work open and ready. 

Position your monitor so it isn't visible from 

your office door (it’s called a Slacker Shield). 

But try not to be too paranoid. Everybody (with 

a life) does it. 

Seek out the wise person 

Somebody on your engineering team knows 

just about everything there is to know about 

just about everything (at least about your 

project... usually more). Befriend them. Listen 

when they speak. Watch what they do. Absorb. 

Let them rub off on you. And don't pretend to 

be this person yourself. You aren't. Yet. 

Suggest, then duck 

Don't be afraid to suggest a new idea or 

approach. And don't be surprised when you are 

shot down. You many have many very good 

ideas which may receive resistance from those 

who have been around longer. Don't be 

discouraged. If you suggest something every 

few months, at some point an old-timer will 

"come up with" the same idea. That's just as 

good. Remember, the goal is to improve the 

product or project, not to stroke your own ego. 

Your good deeds ultimately will be recognized. 

Have a life 

During crunch-times you may need to put in 

long hours, but doing it on a regular basis will 

burn you out. Instead, make it a point to leave 

at the same time every day and have some non-

computer activities and interests that you 

pursue. Don't look back in 20 years and wish 

you had gone to more movies, read more books 

or spent more time with your family. 


