CSC 4181
Compiler Construction

Parsing

Introduction
Parsing is a process that constructs a syntactic structure (i.e. parse tree) from the stream of tokens.
We already learned how to describe the syntactic structure of a language using (context-free) grammar.
So, a parser only needs to do this?

Top–Down Parsing
A parse tree is created from root to leaves.
The traversal of parse trees is a preorder traversal.
Two types:
- Backtracking parser
- Predictive parser

Bottom–Up Parsing
A parse tree is created from leaves to root.
The traversal of parse trees is a reversal of postorder traversal.
Two types:
- Shift-reduce parsers
- Finite automata of items
- Error recovery

Parse Trees and Derivations

E \Rightarrow E + E
 \Rightarrow id + E
 \Rightarrow id + E * E
 \Rightarrow id + id * E
 \Rightarrow id + id * id
 \Rightarrow E + E
 \Rightarrow E + E * E
 \Rightarrow E + E * id
 \Rightarrow E + id * id
 \Rightarrow id + id * id

Top-down parsing

Bottom-up parsing

TOP DOWN PARSING
Top-down Parsing

- What does a parser need to decide?
 - Which production rule is to be used at each point of time?

- How to guess?
- What is the guess based on?
 - What is the next token?
 - Reserved word if, open parentheses, etc.
 - What is the structure to be built?
 - If statement, expression, etc.

Top-down Parsing

- Why is it difficult?
 - Cannot decide until later
 - Next token: if
 - Structure to be built: St
 - St → MatchedSt | UnmatchedSt
 - UnmatchedSt →
 - if (E) St | if (E) MatchedSt else UnmatchedSt
 - MatchedSt → if (E) MatchedSt else MatchedSt [...]
 - Production with empty string
 - Next token: id
 - Structure to be built: par
 - par → parList | λ
 - parList → exp , parList | exp

Recursive-Descent

- Write one procedure for each set of productions with the same nonterminal in the LHS
- Each procedure recognizes a structure described by a nonterminal.
- A procedure calls other procedures if it needs to recognize other structures.
- A procedure calls match procedure if it needs to recognize a terminal.

Recursive-Descent: Example

- For this grammar:
 - We cannot decide which rule to use for E, and
 - If we choose \(E \to E \ O \ F \), it leads to infinitely recursive loops.

- Rewrite the grammar into EBNF

Match procedure

```c
procedure match(expTok)
{
    if (token==expTok)
        getToken
    else
        error
}
```

- The token is not consumed until `getToken` is executed.

Problems in Recursive-Descent

- Difficult to convert grammars into EBNF
- Cannot decide which production to use at each point
- Cannot decide when to use \(\lambda \)-production \(A \to \lambda \).
LL(1) Parsing

- **LL(1)**
 - Read input from (L) left to right
 - Simulate (L) leftmost derivation
 - 1 lookahead symbol

- Use stack to simulate leftmost derivation
 - Part of sentential form produced in the leftmost derivation is stored in the stack.
 - Top of stack is the leftmost nonterminal symbol in the fragment of sentential form.

Example of LL(1) Parsing

E → TX	n
N → FNX	N
X → (n+(n))nS	X
18 18 17 16	

Finished

| E → TX | X → ATX;λ |
| A → t1;λ |
| T → FN |
| N → MFX;λ |
| M → t |
| F → (E) | n |

LL(1) Parsing Algorithm

Push the start symbol into the stack

WHILE stack is not empty ($ is not on top of stack) and the stream of tokens is not empty (the next input token is not $)

SWITCH (Top of stack, next token)

CASE (terminal a, a):
 - Pop stack; Get next token

CASE (nonterminal A, terminal a):
 - IF the parsing table entry M[A, a] is not empty THEN
 - Get A → X1 X2 ... Xn from the parsing table entry M[A, a] Pop stack;
 - Push X1, X2 ... Xn into stack in that order
 - ELSE Error

CASE ($,$): Accept

OTHER: Error

LL(1) Parsing Table

If the nonterminal N is on the top of stack and the next token is t, which production rule to use?

- Choose a rule N → X such that
 - X → * tY or
 - X → * λ and S → * WNY

t	X
Y	t
Q	Y

First Set

Let X be λ or be in V or T.

First(X) is the set of the first terminal in any sentential form derived from X.

- If X is a terminal or λ, then First(X) = {X}.
- If X is a nonterminal and X → X1 X2 ... Xn is a rule, then
 - First(Xi) - {λ} is a subset of First(X)
 - First(X) - {λ} is a subset of First(X) if for all Xj<1 First(Xi) contains {λ}
 - λ is in First(X) if for all j≤n First(Xj) contains λ.
Parsing

Examples of First Set

exp → exp addop term | term
addop → + | -
term → term mulop factor | factor
mulop → *
factor → (exp) | num
First(exp) = {0, 1}
First(addop) = {+, -}
First(term) = {, num}
First(addop) = {+, -}
First(term) = {, num}
First(exp) = {0, 1, num}
First(addop) = {+, -}
First(term) = {, num}
First(exp) = {0, 1, num}

Algorithm for finding First(A)

For all terminals a, First(a) = {a}
For all nonterminals A, First(A) := {}
While there are changes to any First(A)
For each rule A → X₁ X₂ ... Xᵣ
If for all j < i First(Xᵢ) contains λ,
Then add First(Xᵢ) - {λ} to First(A)
For each Xᵢ in {X₁, X₂, ..., Xᵣ}
If some i < n, First(Xᵢ), First(Xᵢ₊₁), ..., First(Xᵣ) contain λ,
Then First(A) contains First(Xᵢ) - {λ}
If First(Xᵢ) is a rule, First(Xᵢ₊₁) → A
And First(Xᵢ₊₁) contains λ,
Then First(A) also contains λ.

Finding First Set: An Example

exp → term exp' exp' → addop term exp' | λ addop → + | -
term → factor term' term' → mulop factor term' | λ mulop → *
factor → (exp) | num

Follow Set

Let $ denote the end of input tokens
If A is the start symbol, then $ is in Follow(A)
If A is a rule B → X A Y, then First(Y) - {λ} is in Follow(A)
If there is a rule B → X A Y and λ is in First(Y), then Follow(A) contains Follow(B).

Algorithm for Finding Follow(A)

Follow(S) = {$}
For each A in V - {$}
Follow(A) = {};
While change is made to some Follow sets
For each production A → X₁ X₂ ... Xᵣ
For each nonterminal Xᵢ
Add First(Xᵢ+₁ Xᵢ₊₂ ... Xᵣ) - {λ} into Follow(Xᵢ)
(Note: if i = n, then Xᵢ₊₁ Xᵢ₊₂ ... Xᵣ = λ)
If λ is in First(Xᵢ+₁ Xᵢ₊₂ ... Xᵣ)
Add Follow(A) to Follow(Xᵢ)

Finding Follow Set: An Example

exp → term exp' exp' → addop term exp' | λ addop → + | -
term → factor term' term' → mulop factor term' | λ mulop → *
factor → (exp) | num

exp (num $)
exp' (λ | - $)
Constructing LL(1) Parsing Tables

FOR each nonterminal A and a production A → X
FOR each token a in First(X)
 A → X is in M(A, a)
 IF λ is in First(X) THEN
 FOR each element a in Follow(A)
 Add A → X to M(A, a)

Example: Constructing LL(1) Parsing Table

<table>
<thead>
<tr>
<th>First</th>
<th>Follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp (num)</td>
<td>()</td>
</tr>
<tr>
<td>exp (num)</td>
<td>+, -</td>
</tr>
<tr>
<td>addop λ</td>
<td>*</td>
</tr>
<tr>
<td>term λ</td>
<td>exp'</td>
</tr>
<tr>
<td>term λ</td>
<td>exp'</td>
</tr>
<tr>
<td>mulop λ</td>
<td>exp'</td>
</tr>
<tr>
<td>factor λ</td>
<td>exp'</td>
</tr>
</tbody>
</table>

LL(1) Grammar

A grammar is an LL(1) grammar if its LL(1) parsing table has at most one production in each table entry.

CAUSES OF NON-LL(1) GRAMMAR

- What causes grammar being non-LL(1)?
 - Left-recursion
 - Left factor

- Immediate left recursion

- General left recursion

- Can be removed very easily

- Can be removed when there is no empty-string production and no cycle in the grammar
Removal of Immediate Left Recursion

exp → exp + term | exp - term | term
term → term * factor | factor
factor → (exp) | num

Remove left recursion
exp → term exp’
exp’ → + term exp’ | - term exp’ | λ
term → factor term’
term’ → * factor term’ | λ
factor → (exp) | num

General Left Recursion

Bad News!
• Can only be removed when there is no empty-string production and no cycle in the grammar.

Good News!!!!
• Never seen in grammars of any programming languages

Left Factoring

Left factor causes non-LL(1)
• Given A → X Y | X Z. Both A → X Y and A → X Z can be chosen when A is on top of stack and a token in First(X) is the next token.

A → X Y | X Z
 can be left-factored as
A → X A’ and A’ → Y | Z

Example of Left Factor

ifSt → if (exp) st else st | if (exp) st can be left-factored as
ifSt → if (exp) st elsePart
elsePart → else st | λ

seq → st ; seq | st
 can be left-factored as
seq → st seq’
seq’ → ; seq | λ

Bottom-up Parsing

Use explicit stack to perform a parse
Simulate rightmost derivation (R) from left (L) to right, thus called LR parsing
More powerful than top-down parsing
• Left recursion does not cause problem
Two actions
• Shift: take next input token into the stack
• Reduce: replace a string B on top of stack by a nonterminal A, given a production A → B
Example of Shift-reduce Parsing

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Parsing actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S' \rightarrow S$</td>
<td>$S \rightarrow (S)S \mid \lambda$</td>
</tr>
</tbody>
</table>

Reverse of Rightmost Derivation
- from left to right

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>$S\rightarrow (S)S$</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>ε</td>
<td>ε</td>
<td>ε</td>
</tr>
</tbody>
</table>

Terminology

- **Right sentential form**
 - sentential form in a rightmost derivation
- **Viable prefix**
 - sequence of symbols on the parsing stack
- **Handle**
 - right sentential form + position where reduction can be performed + production used for reduction
- **LR(0) Item**
 - production with distinguished position in its RHS

Shift-Reduce parsers

There are two possible actions:
- shift and reduce

Parsing is completed when:
- the input stream is empty and
- the stack contains only the start symbol

The grammar must be **augmented**
- a new start symbol S' is added
- a production $S' \rightarrow S$ is added

To make sure that parsing is finished when S' is on top of the stack because S' never appears on the RHS of any production.

LR(0) parsing

Keep track of what is left to be done in the parsing process by using finite automata of items
- An item $A \rightarrow w \cdot B \cdot y$ means:
 - $A \rightarrow w$ $B \cdot y$ might be used for the reduction in the future,
 - at the time, we know we already construct w in the parsing process,
 - if B is constructed next, we get the new item $A \rightarrow w \cdot B \cdot y$

LR(0) items

- **LR(0) Item**
 - production with a distinguished position in the RHS
- **Initial Item**
 - Item with the distinguished position on the leftmost of the production
- **Complete Item**
 - Item with the distinguished position on the rightmost of the production
- **Closure Item of x**
 - Item x together with items which can be reached from x via λ-transition
- **Kernel Item**
 - Original item, not including closure items
Finite automata of items

Grammar:
- $S' \rightarrow S$
- $S \rightarrow (S)S$
- $S \rightarrow \lambda$

Items:
- $S' \rightarrow S$
- $S' \rightarrow s$
- $S \rightarrow (S)S$
SLR(1) parsing

- Simple LR with 1 lookahead symbol
- Examine the next token before deciding to shift or reduce
 - If the next token is the token expected in an item, then it can be shifted into the stack.
 - If a complete item $A \rightarrow x.$ is constructed and the next token is in Follow(A), then reduction can be done using $A \rightarrow x.$
 - Otherwise, error occurs.
- Can avoid conflict

SLR(1) parsing algorithm

<table>
<thead>
<tr>
<th>Item in state</th>
<th>token</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow x. B$ (B is terminal)</td>
<td>B</td>
<td>shift B and push state s containing $A \rightarrow x.B$</td>
</tr>
<tr>
<td>$A \rightarrow x.$ (B is terminal)</td>
<td>not B</td>
<td>error</td>
</tr>
<tr>
<td>$A \rightarrow x.$ in Follow(A)</td>
<td></td>
<td>reduce with $A \rightarrow x.$ (i.e. pop x, backup to the state s on top of stack) and push A with new state $d(s,A)$</td>
</tr>
<tr>
<td>$A \rightarrow x.$ not in Follow(A)</td>
<td></td>
<td>error</td>
</tr>
<tr>
<td>$S' \rightarrow S.$</td>
<td>none</td>
<td>accept</td>
</tr>
<tr>
<td>$S' \rightarrow S.$</td>
<td>any</td>
<td>error</td>
</tr>
</tbody>
</table>

SLR(1) grammar

Conflict

- Shift-reduce conflict
 - A state contains a shift item $A \rightarrow x.Wy$ such that W is a terminal and a complete item $B \rightarrow z$ such that W is in Follow(B).
- Reduce-reduce conflict
 - A state contains more than one complete item with some common Follow set.
A grammar is an SLR(1) grammar if there is no conflict in the grammar.

SLR(1) Grammar not LR(0)

Disambiguating Rules for Parsing Conflict

- **Shift-reduce conflict**
 - Prefer shift over reduce
 - In case of nested if statements, preferring shift over reduce implies most closely nested rule for dangling else
- **Reduce-reduce conflict**
 - Error in design
LALR(1) parsing

- **Goal:** reduce number of states in LR(1) parser.
- **Some states LR(1) automaton have the same core items and differ only in the possible lookahead.**
 - States I_3 and I_3', I_5 and I_5', I_7 and I_7', I_8 and I_8'
- **We shrink our parser by merging such states.**
- SLR: 10 states, LR(1): 14 states, LALR(1): 10 states

Conflicts in LALR(1) parsing

- Most conflicts that existed in LR(1) parser can be eliminated with LALR(1)
- Can LALR(1) parsers introduce conflicts that did not exist in the LR(1) parser?
 - Unfortunately YES.
 - BUT, only reduce/reduce conflicts.
- YACC generates LALR(1) parser