CSC 4181
Compiler Construction

Parsing

Outline
- Top-down v.s. Bottom-up
 - Top-down parsing
 - Recursive-descent parsing
 - LL(1) parsing
 - LL(1) parsing algorithm
 - First and follow sets
 - Constructing LL(1) parsing table
 - Error recovery
 - Bottom-up parsing
 - Shift-reduce parsers
 - LR(0) parsing
 - LR(0) items
 - Finite automata of items
 - LR(0) parsing algorithm
 - LR(0) grammar
 - SLR(1) parsing
 - SLR(1) parsing algorithm
 - SLR(1) grammar
 - Parsing conflict

Introduction
- Parsing is a process that constructs a syntactic structure (i.e. parse tree) from the stream of tokens.
- We already learned how to describe the syntactic structure of a language using (context-free) grammar.
- So, a parser only needs to do this?

Stream of tokens → **Context-free grammar** → **Parser** → **Parse tree**

Parse Trees and Derivations

Top-down Parsing
- E → E + E
- id + E
- id + E * E
- id + id * E
- id + id * id
- E + E
- E + E * E
- E + id * id
- E + id * id

Bottom-up Parsing
- E → E + E
- id + E
- id + E * E
- id + id * E
- id + id * id
- E + E
- E + E * E
- E + id * id
- E + id * id

Top-down Parsing
- What does a parser need to decide?
 - Which production rule is to be used at each point of time?
- How to guess?
 - What is the next token?
 - Reserved word if, open parentheses, etc.
 - What is the structure to be built?
 - If statement, expression, etc.
Top-down Parsing

- Why is it difficult?
 - Cannot decide until later
 - Next token: if Structure to be built: St
 St → MatchedSt | UnmatchedSt
 UnmatchedSt → if (E) St | if (E) MatchedSt else UnmatchedSt
 - MatchedSt → if (E) MatchedSt else MatchedSt [...]
 - Production with empty string
 Next token: id Structure to be built: par
 par → parList | λ
 parList → exp , parList | exp

Recursive-Descent

- Write one procedure for each set of productions with the same nonterminal in the LHS
- Each procedure recognizes a structure described by a nonterminal.
- A procedure calls other procedures if it needs to recognize other structures.
- A procedure calls match procedure if it needs to recognize a terminal.

Recursive-Descent: Example

- For this grammar:
 - We cannot decide which rule to use for E, and
 - If we choose E → E O F, it leads to infinitely recursive loops.
 - Rewrite the grammar into EBNF

Match procedure

- procedure match(expTok)
 - if (token==expTok) then getToken else error

- The token is not consumed until getToken is executed.

Problems in Recursive-Descent

- Difficult to convert grammars into EBNF
- Cannot decide which production to use at each point
- Cannot decide when to use λ-production A → λ

LL(1) Parsing

- LL(1)
 - Read input from (L) left to right
 - Simulate (L) leftmost derivation
 - 1 lookahead symbol
 - Use stack to simulate leftmost derivation
 - Part of sentential form produced in the leftmost derivation is stored in the stack.
 - Top of stack is the leftmost nonterminal symbol in the fragment of sentential form.
Concept of LL(1) Parsing
- Simulate leftmost derivation of the input.
- Keep part of sentential form in the stack.
- If the symbol on the top of stack is a terminal, try to match it with the next input token and pop it out of stack.
- If the symbol on the top of stack is a nonterminal X, replace it with Y if we have a production rule $X \rightarrow Y$.

 Which production will be chosen, if there are both $X \rightarrow Y$ and $X \rightarrow Z$?

Example of LL(1) Parsing

$(n + (n)) * n$

LL(1) Parsing Algorithm

Push the start symbol into the stack

WHILE stack is not empty ($\$$ is not on top of stack) and the stream of tokens is not empty (the next input token is not $\$$)

SWITCH (Top of stack, next token)

CASE (terminal a, a):
- Pop stack;
- Get next token

CASE (nonterminal A, terminal a):
- IF the parsing table entry $M[A, a]$ is not empty THEN
 - Get $A \rightarrow X_1 \ldots X_n$ from the parsing table entry $M[A, a]$ Pop stack;
 - Push $X_n \ldots X_2 X_1$ into stack in that order
 - ELSE Error

CASE ($\$$,$\$$):
- Accept

OTHER: Error

LL(1) Parsing Table

If the nonterminal N is on the top of stack and the next token is t, which production rule to use?

Choose a rule $N \rightarrow X$ such that

- $X \Rightarrow^* tY$ or
- $X \Rightarrow^* \lambda$ and $S \Rightarrow^* WNtY$

First Set

Let X be λ or be in V or T.

First(X) is the set of the first terminal in any sentential form derived from X.

- If X is a terminal or λ, then First(X) = \{ X \}.
- If X is a nonterminal and $X \rightarrow X_1 X_2 \ldots X_n$ is a rule, then
 - First(X_i) - $\{ \lambda \}$ is a subset of First(X)
 - First(X_i) - $\{ \lambda \}$ is a subset of First(X) if there's any $j < i$ where First(X_j) contains λ
 - λ is in First(X) if for all $j \leq n$ First(X_j) contains λ

Examples of First Set

$exp \rightarrow$ exp addop term | term
addop \rightarrow + | -
term \rightarrow term mulop factor | factor
mulop \rightarrow *
factor \rightarrow (exp) | num
First(exp) = $\{ +, - \}$
First(addop) = $\{ +, - \}$
First(mulop) = $\{ * \}$
First(factor) = $\{ (, num) \}$
First(term) = $\{ (, num) \}$
First(exp) = $\{ (, num) \}$

$st \rightarrow$ ifst | other
ifst \rightarrow if (exp) st elsepart
elsepart \rightarrow else st | λ
exp \rightarrow 0 | 1
First(exp) = $\{ 0, 1 \}$
First(elsepart) = $\{ else, \lambda \}$
First(ifst) = $\{ if \}$
First(st) = $\{ if, other \}$
Algorithm for finding First(A)

- For all terminals a, $\text{First}(a) = \{a\}$
- For all nonterminals A, $\text{First}(A) := \{}$
- While there are changes to any $\text{First}(A)$
 - For each rule $A \rightarrow X_1 X_2 \ldots X_n$
 - For each X_i in $\{X_1, X_2, \ldots, X_n\}$
 - If for all $j < i$, $\text{First}(X_j)$ contains λ, then $\text{First}(A)$ contains $\text{First}(X_i) - \{\lambda\}$
 - If λ is in $\text{First}(X_1), \text{First}(X_2), \ldots$, and $\text{First}(X_n)$ contain λ, then $\text{First}(A)$ also contains λ
 - If A is a terminal or λ, then $\text{First}(A) = \{A\}$
 - If A is a nonterminal, then for each rule $A \rightarrow X_1 X_2 \ldots X_n$, $\text{First}(A)$ contains $\text{First}(X_i) - \{\lambda\}$
 - If also for some $i < n$, $\text{First}(X_i), \text{First}(X_{i+1}), \ldots$, and $\text{First}(X_n)$ contain λ, then $\text{First}(A)$ contains $\text{First}(X_{i+1}) - \{\lambda\}$

Finding First Set: An Example

<table>
<thead>
<tr>
<th>Symbol</th>
<th>First</th>
<th>Follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp</td>
<td>(num)</td>
<td>$$</td>
</tr>
<tr>
<td>exp'</td>
<td>λ</td>
<td>$$</td>
</tr>
<tr>
<td>addop</td>
<td>$+$</td>
<td>$$</td>
</tr>
<tr>
<td>term</td>
<td>(num)</td>
<td>$$</td>
</tr>
<tr>
<td>factor</td>
<td>λ</td>
<td>$$</td>
</tr>
<tr>
<td>mulop</td>
<td>$*$</td>
<td>$$</td>
</tr>
</tbody>
</table>

Follow Set

1. Let $\$ denote the end of input tokens
2. If A is the start symbol, then $\$ is in $\text{Follow}(A)$.
3. If there is a rule $B \rightarrow X A Y$, then $\text{First}(Y) - \{\lambda\}$ is in $\text{Follow}(A)$.
4. If there is production $B \rightarrow X A Y$ and λ is in $\text{First}(Y)$, then $\text{Follow}(A)$ contains $\text{Follow}(B)$.

Algorithm for Finding Follow(A)

- $\text{Follow}(\$) = $\$
- FOR each A in $V - \{S\}$
 - $\text{Follow}(A) = \{\}$
- WHILE change is made to some Follow sets
 - FOR each production $A \rightarrow X_1 X_2 \ldots X_n$
 - FOR each nonterminal X_i
 - Add $\text{First}(X_{i+1} X_{i+2} \ldots X_n) - \{\lambda\}$ into $\text{Follow}(X_i)$
 - IF λ is in $\text{First}(X_{i+1} X_{i+2} \ldots X_n)$ THEN add $\text{Follow}(A)$ to $\text{Follow}(X_i)$
 - IF A is the start symbol, then $\$ is in $\text{Follow}(A)$.
 - IF there is a rule $A \rightarrow Y X Z$, then $\text{First}(Z) - \{\lambda\}$ is in $\text{Follow}(X)$.
 - IF there is production $B \rightarrow X A Y$ and λ is in $\text{First}(Y)$, then $\text{Follow}(A)$ contains $\text{Follow}(B)$.

Finding Follow Set: An Example

Constructing LL(1) Parsing Tables

FOR each nonterminal A and a production $A \rightarrow X$
FOR each token a in $\text{First}(X)$
 - $A \rightarrow X$ is in $M(A, a)$
 - IF λ is in $\text{First}(X)$ THEN
 - FOR each element a in $\text{Follow}(A)$
 - Add a to $M(A, a)$

Example: Constructing LL(1) Parsing Table

<table>
<thead>
<tr>
<th>First (exp)</th>
<th>Follow (exp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>+ - * n $</td>
</tr>
<tr>
<td>exp</td>
<td>exp' addop</td>
</tr>
<tr>
<td>term</td>
<td>term' factor</td>
</tr>
<tr>
<td>factor</td>
<td>mulop</td>
</tr>
</tbody>
</table>

| 1 exp → term exp' |
| 2 exp' → addop term exp' |
| 3 exp' → λ |
| 4 addop → + |
| 5 addop → - |
| 6 term → factor term' |
| 7 term' → mulop factor term' |
| 8 term' → λ |
| 9 mulop → * |
| 10 factor → (exp) |
| 11 factor → num |

LL(1) Grammar

A grammar is an LL(1) grammar if its LL(1) parsing table has at most one production in each table entry.

LL(1) Parsing Table for non-LL(1) Grammar

<table>
<thead>
<tr>
<th>First</th>
<th>Follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>+ - * num $</td>
</tr>
<tr>
<td>exp</td>
<td>1 1.2</td>
</tr>
<tr>
<td>term</td>
<td>3.4 3.4</td>
</tr>
<tr>
<td>factor</td>
<td>5 6</td>
</tr>
<tr>
<td>addop</td>
<td>7 8</td>
</tr>
<tr>
<td>mulop</td>
<td>9</td>
</tr>
</tbody>
</table>

First(exp) = { (, num)}
First(term) = { (, num)}
First(factor) = { (, num)}
First(addop) = { +, - }
First(mulop) = { * }

Causes of Non-LL(1) Grammar

What causes grammar being non-LL(1)?
- Left-recursion
- Left factor

Left Recursion

- Immediate left recursion
 - A → AX | Y A=Y X*
 - A → AX_1 | AX_2 |...| AX_n
 - Y_1 | Y_2 |...| Y_m
 - A=(Y_1, Y_2,..., Y_m) (X_1, X_2,..., X_n)*
- General left recursion
 - A → X =⇒ X =⇒* A Y

Can be removed when there is no empty-string production and no cycle in the grammar.

Removal of Immediate Left Recursion

exp → exp + term | exp - term | term
term → term * factor | factor
factor → (exp) | num

Remove left recursion
exp → term exp’ exp’ → + term exp’ | - term exp’ | λ
term → factor term’ term’ → * factor term’ | λ
factor → (exp) | num
General Left Recursion

- **Bad News!**
 - Can only be removed when there is no empty-string production and no cycle in the grammar.

- **Good News!!!!**
 - Never seen in grammars of any programming languages

Left Factoring

- **Left factor causes non-LL(1)**
 - Given $A \rightarrow X Y \mid X Z$. Both $A \rightarrow X Y$ and $A \rightarrow X Z$ can be chosen when A is on top of stack and a token in First(X) is the next token.

 \[A \rightarrow X Y \mid X Z \]
 \[\text{can be left-factored as} \]
 \[A \rightarrow X A' \quad \text{and} \quad A' \rightarrow Y \mid Z \]

Example of Left Factor

ifSt \rightarrow if (exp) st else | if (exp) st
 can be left-factored as
ifSt \rightarrow if (exp) st elsePart
elsePart \rightarrow else st | \(\lambda \)

seq \rightarrow st ; seq | st
 can be left-factored as
seq \rightarrow st seq'
seq' \rightarrow ; seq | \(\lambda \)

Bottom-up Parsing

- Use explicit stack to perform a parse
- Simulate rightmost derivation (R) from left (L) to right, thus called LR parsing
- More powerful than top-down parsing
 - Left recursion does not cause problem
 - Two actions
 - Shift: take next input token into the stack
 - Reduce: replace a string B on top of stack by a nonterminal A, given a production $A \rightarrow B$

Example of Shift-reduce Parsing

<table>
<thead>
<tr>
<th>Grammar</th>
<th>$S' \rightarrow S$</th>
<th>$S \rightarrow (S)S \mid \lambda$</th>
<th>Parsing actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack</td>
<td>Input</td>
<td>Action</td>
<td>Stack</td>
</tr>
<tr>
<td>$$</td>
<td></td>
<td></td>
<td>$$</td>
</tr>
<tr>
<td>$(())$</td>
<td>$$</td>
<td></td>
<td>$(())$</td>
</tr>
<tr>
<td>$((()))$</td>
<td>$(())$</td>
<td></td>
<td>$((()))$</td>
</tr>
<tr>
<td>$(())$</td>
<td>$$</td>
<td></td>
<td>$(())$</td>
</tr>
<tr>
<td>(S)</td>
<td>$$</td>
<td></td>
<td>(S)</td>
</tr>
<tr>
<td>S</td>
<td>$$</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>S</td>
<td>10 S'</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

Reverse of rightmost derivation from left to right

Example of Shift-reduce Parsing

<table>
<thead>
<tr>
<th>Grammar</th>
<th>$S' \rightarrow S$</th>
<th>$S \rightarrow (S)S \mid \lambda$</th>
<th>Parsing actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack</td>
<td>Input</td>
<td>Action</td>
<td>Stack</td>
</tr>
<tr>
<td>$$</td>
<td></td>
<td>shift</td>
<td>$$</td>
</tr>
<tr>
<td>$(())$</td>
<td>$$</td>
<td>$(())$</td>
<td>$(())$</td>
</tr>
<tr>
<td>$(())$</td>
<td>$$</td>
<td>$(())$</td>
<td>$(())$</td>
</tr>
<tr>
<td>(S)</td>
<td>$$</td>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>S</td>
<td>$$</td>
<td>(S)</td>
<td>S</td>
</tr>
<tr>
<td>S</td>
<td>$$</td>
<td>(S)</td>
<td>S</td>
</tr>
<tr>
<td>S</td>
<td>10 S'</td>
<td>accept</td>
<td>S</td>
</tr>
</tbody>
</table>

Viable prefix
Terminologies

- Right sentential form
 - sentential form in a rightmost derivation
- Viable prefix
 - sequence of symbols on the parsing stack
- Handle
 - right sentential form at position where reduction can be performed + production used for reduction
- LR(0) item
 - production with distinguished position in its RHS

Shift-reduce parsers

- There are two possible actions:
 - shift and reduce
- Parsing is completed when
 - the input stream is empty and
 - the stack contains only the start symbol
- The grammar must be augmented
 - a new start symbol S' is added
 - a production $S' \rightarrow S$ is added
 - To make sure that parsing is finished when S' is on top of stack because S' never appears on the RHS of any production.

LR(0) parsing

- Keep track of what is left to be done in the parsing process by using finite automata of items
 - An item $A \rightarrow w . B \ y$ means:
 - $A \rightarrow w B \ y$ might be used for the reduction in the future,
 - at the time, we know we already construct w in the parsing process,
 - if B is constructed next, we get the new item $A \rightarrow w B \ . \ y$

LR(0) items

- LR(0) item
 - production with a distinguished position in the RHS
- Initial Item
 - Item with the distinguished position on the leftmost of the production
- Complete Item
 - Item with the distinguished position on the rightmost of the production
- Closure Item of x
 - Item x together with items which can be reached from x via λ-transition
- Kernel Item
 - Original item, not including closure items

Finite automata of items

Grammar:

- $S' \rightarrow S$
- $S \rightarrow (S)S$
- $S \rightarrow \lambda$

Items:

- $S' \rightarrow S$
- $S' \rightarrow S$
- $S \rightarrow (S)S$
- $S \rightarrow \lambda$

DFA of LR(0) Items

- LR(0) item
 - production with a distinguished position in the RHS
- Initial Item
 - Item with the distinguished position on the lefmost of the production
- Complete Item
 - Item with the distinguished position on the rightmost of the production
- Closure Item of x
 - Item x together with items which can be reached from x via λ-transition
- Kernel Item
 - Original item, not including closure items
LR(0) parsing algorithm

<table>
<thead>
<tr>
<th>Item in state</th>
<th>token</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A -> x.By where B is terminal</td>
<td>B</td>
<td>shift B and push state s containing A -> xB.y</td>
</tr>
<tr>
<td>A -> x.By where B is terminal</td>
<td>not B</td>
<td>error</td>
</tr>
<tr>
<td>A -> x.</td>
<td>-</td>
<td>reduce with A -> x (i.e., pop x, backup to the state s on top of stack) and push A with new state d(s,A)</td>
</tr>
<tr>
<td>S' -> S.</td>
<td>none</td>
<td>accept</td>
</tr>
<tr>
<td>S' -> S.</td>
<td>any</td>
<td>error</td>
</tr>
</tbody>
</table>

LR(0) Parsing Table

```
<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Rule</th>
<th>( a )</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>shift</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>reduce</td>
<td>A' -&gt; A</td>
<td>3 2 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>reduce</td>
<td>A -&gt; a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>shift</td>
<td>2</td>
<td>3 4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>shift</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>reduce</td>
<td>A -&gt; (A)</td>
<td>3 2 4</td>
<td></td>
</tr>
</tbody>
</table>
```

Example of LR(0) Parsing

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(((a))$</td>
<td>shift</td>
<td>3</td>
</tr>
<tr>
<td>$0</td>
<td>3</td>
<td>(a)$</td>
<td>shift</td>
</tr>
<tr>
<td>$0</td>
<td>3</td>
<td>2</td>
<td>a$</td>
</tr>
<tr>
<td>$0</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>$0</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$0</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$0</td>
<td>4</td>
<td>1</td>
<td>$</td>
</tr>
</tbody>
</table>

Non-LR(0) Grammar

- Conflict
 - Shift-reduce conflict
 - A state contains a complete item A -> x, and a shift item A -> x.By
 - Reduce-reduce conflict
 - A state contains more than one complete items.

A grammar is a LR(0) grammar if there is no conflict in the grammar.

SLR(1) parsing algorithm

- Simple LR with 1 lookahead symbol
- Examine the next token before deciding to shift or reduce
 - If the next token is the token expected in an item, then it can be shifted into the stack.
 - If a complete item A -> x is constructed and the next token is in Follow(A), then reduction can be done using A -> x.
 - Otherwise, error occurs.
- Can avoid conflict

SLR(1) parsing

<table>
<thead>
<tr>
<th>Item in state</th>
<th>token</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A -> x.By where B is terminal</td>
<td>B</td>
<td>shift B and push state s containing A -> xB.y</td>
</tr>
<tr>
<td>A -> x.By where B is terminal</td>
<td>not B</td>
<td>error</td>
</tr>
<tr>
<td>A -> x.</td>
<td>Follow(A)</td>
<td>reduce with A -> x (i.e., pop x, backup to the state s on top of stack) and push A with new state d(s,A)</td>
</tr>
<tr>
<td>A -> x.</td>
<td>not in Follow(A)</td>
<td>error</td>
</tr>
<tr>
<td>S' -> S.</td>
<td>none</td>
<td>accept</td>
</tr>
<tr>
<td>S' -> S.</td>
<td>any</td>
<td>error</td>
</tr>
</tbody>
</table>
SLR(1) grammar

Conflict
- Shift-reduce conflict
 - A state contains a shift item $A \rightarrow x.Wy$ such that W is a terminal and a complete item $B \rightarrow z$ such that W is in Follow(B).
- Reduce-reduce conflict
 - A state contains more than one complete item with some common Follow set.

A grammar is an SLR(1) grammar if there is no conflict in the grammar.

SLR(1) Parsing Table

| State | (a) | $|$ | A |
|-------|-------|----|----|
| 0 | S3 | S2 | 1 |
| 1 | AC | | |
| 2 | R2 | | |
| 3 | S3 | S2 | 4 |
| 4 | S5 | | |
| 5 | R1 | | |

Disambiguating Rules for Parsing Conflict

- **Shift-reduce conflict**
 - Prefer shift over reduce
 - In case of nested if statements, preferring shift over reduce implies most closely nested rule for dangling else
- **Reduce-reduce conflict**
 - Error in design

Dangling Else

<table>
<thead>
<tr>
<th>State</th>
<th>if</th>
<th>else</th>
<th>other</th>
<th>S</th>
<th>S</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S4</td>
<td>S3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>R1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R2</td>
<td>R2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S4</td>
<td>S3</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S6</td>
<td>R3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S4</td>
<td>S3</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R4</td>
<td>R4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>