
CSC 1051  Algorithms & Data 
Structures I

File Input & Output



2

FILE INPUT & OUTPUT



Reading and Writing Text Files

A Scanner object can be set up to read from various sources, 
including a text file

Instead of create a Scanner that reads from System.in, it can be 
sent a File object

3

File file = new File("input.txt");
Scanner in = new Scanner(file);

The File class is part of the java.io package

The scanner’s hasNext method (or some variation) is usually
used to determine when the end of the file is encountered



Reading and Writing Text Files

Creating a Scanner object from a File will cause a 
FileNotFoundException to be thrown if the file doesn't exist

This is a checked exception, which means it must be dealt with 
one way or another

It could be caught and handled explicitly

Or a throws clause could be added to the method header to 
indicate that the method may throw that exception

4



Reading and Writing Text Files

This program reads an input file one line at a time and prints it to 
standard output (the console window)

5

public static void main(String[] args) throws 
FileNotFoundException

{
Scanner in = new Scanner(new File("inDemo.txt"));

String line;

while (in.hasNextLine())
{

line = in.nextLine();
System.out.println(line);

}
}



Reading and Writing Text Files

It’s easy to forget to create a File object when setting up a 
Scanner:

6

Scanner in = new Scanner(“input.txt”);

This creates a valid Scanner object, but not one that reads from
a file

A Scanner can be created to parse a String, too



Reading and Writing Text Files

A PrintWriter object can be used to write to an output file

7

PrintWriter out = new PrintWriter(“output.txt”);

PrintWriter is also part of the java.io package

Note that no File object is needed

If there is no such file, it is created

If the file exists, the current contents will be overwritten and lost

The PrintWriter constructor may throw an IOException if there is
any problem creating the file



Reading and Writing Text Files

Like System.out, a PrintWriter object has print, println, and 
printf methods that can be used to write output to the file

Output files should be closed using the close method when 
you’re done writing to them

If you don’t, data might be lost or corrupted

8



Reading and Writing Text Files

This program writes some lyrics to an output file:

9

public static void main(String[] args) throws IOException
{

PrintWriter out = new PrintWriter("outDemo.txt");

out.println("You say you want a revolution");
out.println("Well, you know");
out.println("We all want to change the world");
out.println();
out.println("You tell me that it's evolution");
out.println("Well, you know");
out.println("We all want to change the world");

out.close();
}



Reading and Writing Text Files

This program reads an input file and echoes it to an output file 
with line numbers added:

10

import java.io.*;
import java.util.Scanner;

public class LineNumbers
{

public static void main(String[] args) throws IOException
{

Scanner in = new Scanner(new File("poem.txt"));
PrintWriter out = new     

PrintWriter("poemWithLineNumbers.txt");

String line;

...



Reading and Writing Text Files

11

int i = 1;
while (in.hasNextLine())
{

line = in.nextLine();

if (line.equals(""))  // don't number blank lines
out.println();

else
{

out.print(i + "\t");
out.println(line);
i = i + 1;

}
}

out.close();
}

}



Reading and Writing Text Files

12

Two roads diverged in a yellow wood, 
And sorry I could not travel both 
And be one traveler, long I stood 
And looked down one as far as I could 
To where it bent in the undergrowth; 

Then took the other, as just as fair, 
And having perhaps the better claim, 
Because it was grassy and wanted wear; 
Though as for that the passing there 
Had worn them really about the same,

...

1     Two roads diverged in a yellow wood, 
2     And sorry I could not travel both 
3     And be one traveler, long I stood 
4     And looked down one as far as I could 
5     To where it bent in the undergrowth; 

6     Then took the other, as just as fair, 
7     And having perhaps the better claim, 
8     Because it was grassy and wanted wear; 
9     Though as for that the passing there 
10 Had worn them really about the same, 

...

Input File Output File



Example: Counting Numbers

13

The field of data analytics, and related areas, often need to 
read values from a file, process them in some way or perform 
calculations with them, and output the some results.

In Java, the Scanner class provide a convenient interface for 
reading specific values, both interactively and from a file. The 
hasNext and next methods handle checking for and reading 
values of various types.

This example demonstrates reading values from a text file and 
analyzing those values to find a minimum, maximum, and 
average of those values.



Example: Counting Numbers

14

FileReader input = new FileReader("numbers.txt");
Scanner scan = new Scanner(input);
double total = 0, int count = 0;
int minimum = Integer.MAX_VALUE, minimum = Integer.MIN_VALUE;

while (scan.hasNextInt())
{

int number = scan.nextInt();
count++;
total += number;
if (number < minimum)

minimum = number;
if (number > maximum)

maximum = number;
}

Using a FileReader and Scanner, values are read one at a time 
from a large file of integers, and counted, summed, and their 
minimum and maximum values determined.



Example: Counting Numbers

15

Once a total, count, minimum, and maximum are found, 
results can be printed:

Total: 505042.0
Count: 10000
Minimum: 1
Maximum: 100
Average: 50.5042

System.out.println("Total: " + total);

System.out.println("Count: " + count);

System.out.println("Minimum: " + minimum);

System.out.println("Maximum: " + maximum);

System.out.println("Average: " + total / count);



Buffered Streams

Interactive input with user-entered strings or integers is often 
done with the convenience of the Scanner class.

When reading a lot of data from a file, a buffered stream can be 
more efficient because it can buffer the data by reading 
thousands of bytes ahead.

Without a buffer, each read requires the operating system to get 
involved with each read and write operation, which can slow 
down input and output a lot!

16



Buffered Streams

17

FileReader input = new FileReader("hugedatafile.txt");

BufferedReader reader = new BufferedReader(input);

A BufferedReader object can be constructed using a FileReader
object.

The FileReader handles low level reads and writes while the 
BufferedReader reduces how many of those operations are 
needed by buffering the data.



Buffered Streams

18

FileReader input = new FileReader("hugedatafile.txt");
BufferedReader reader = new BufferedReader(input);

String line;
while ((line = reader.readLine()) != null)
{

System.out.println(line);
}

reader.close();

This example code reads the contents of a text file and prints it 
out to the screen, line by line.

It is good practice to close the buffered stream when you're 
done with it to avoid losing data.



Buffered Streams

19

FileReader input = new FileReader("originalfile.txt");
BufferedReader reader = new BufferedReader(input);

FileWriter output = new FileWriter("copiedfile.txt");
BufferedWriter writer = new BufferedWriter(output);

String line;
while ((line = reader.readLine()) != null)
{

writer.write(line + "\n"); // readLine removes 
newlines

}

reader.close();
writer.close();

A BufferedReader and BufferedWriter can work together to 
efficiently copy a file, like this:



Buffered Streams

20

The FileReader, FileWriter, BufferedReader, and BufferedWriter
classes are best for textual data. For binary data, including 
images, Java provides these corresponding classes:

• FileInputStream – reads binary data

• BufferedInputStream – buffers binary data that is read

• FileOutputStream – writes binary data

• BufferedOutputStream – buffers binary data to write



Buffered Streams

21

FileInputStream input = new FileInputStream("orig.jpg");
BufferedInputStream reader = new BufferedInputStream(input);

FileOutputStream output = new FileOutputStream("copy.jpg");
BufferedOutputStream writer = new BufferedOutputStream(output);

byte[] buffer new byte[4096];

while ((int numBytes = reader.read(buffer)) != -1)
{

writer.write(buffer, 0, numBytes); newlines
}

reader.close();
writer.close();

This example shows how to copy a binary file:

You could copy a text file this way, too, since a text file is a special 
case of a binary file. The opposite is not true, though.



Example: Counting Letters

22

Counting the occurrences of data is an important concept in 
science. The frequency with which a specific data item occurs 
can be used for encryption, data compression, code cracking, 
cybersecurity, and text mining.

One of the earliest uses of data frequency is Morse Code, 
which was developed by Samuel Morse and first used in 1844 
to efficiently communicate text information with a telegraph.



Example: Counting Letters

23

In Morse Code, each letter of the alphabet is made up of 
combinations of dots and dashes. The more common a letter 
is, the fewer dots and dashes are used for that letter.

Morse Code Alphabet



Example: Counting Letters

24

The frequency of letters occurring in written English language 
was used to create the Morse Code alphabet. Here's a general 
idea of how common letters in English are:

The creation of Morse Code was an early use of data mining.



Example: Counting Letters

25

Stream text = "I have a dream that my four little children " +
"will one day live in a nation where they will not be " +
"judged by the color of their skin but by the content " +
"of their character.";

Map counts = new LinkedHashMap();

for (int i = 0; i < text.length(); i++)
{

char letter = text.charAt(i);
if (Character.isAlphabetic(letter))
{

if (counts.containsKey(letter))
counts.put(letter, counts.get(letter) + 1);

else
counts.put(letter, 1);

}
}

A map can be used to count letters. The for loop iterates 
through the characters, incrementing its entry in counts. 



Example: Counting Letters

26

System.out.println("Letter frequencies:");

boolean first = true;
for (Character letter : counts.keySet())
{

System.out.print((first ? "" : ", ") + letter + 
": " + counts.get(letter));

first = false;
}

The entries in the map are printed using a for-each loop. 

Letter frequencies:
I: 11, H: 10, A: 9, V: 2, E: 17, D: 5, R: 9, M: 2, T: 15, Y: 5, F: 3, O: 
9, U: 3, L: 9, C: 5, N: 9, W: 3, B: 4, J: 1, G: 1, S: 1, K: 1



Example: Counting Letters

27

Here is the result of counting letters in Dr. Martin Luther King, 
Jr.'s famous "I Have a Dream" speech:

A  ####################################### 561 (7.8%)
B  ######## 114 (1.6%)
C  ############ 183 (2.5%)
D  ################## 257 (3.6%)
E  ############################################################# 891 (12.3%)
F  ############### 224 (3.1%)
G  ############ 177 (2.4%)
H  ########################### 389 (5.4%)
I  ####################################### 568 (7.8%)
J  # 22 (0.3%)
K  ### 52 (0.7%)
L  ####################### 341 (4.7%)
M  ############# 190 (2.6%)
N  ################################# 476 (6.6%)
O  ########################################## 608 (8.4%)
P  ###### 97 (1.3%)
Q  # 6 (0.1%)
R  ############################# 419 (5.8%)
S  ############################# 429 (5.9%)
T  ############################################## 672 (9.3%)
U  ############ 176 (2.4%)
V  ##### 82 (1.1%)
W  ########### 164 (2.3%)
X  # 5 (0.1%)
Y  ######### 127 (1.8%)
Z  # 6 (0.1%)


	CSC 1051  Algorithms & Data Structures I
	File Input & Output
	Reading and Writing Text Files
	Reading and Writing Text Files
	Reading and Writing Text Files
	Reading and Writing Text Files
	Reading and Writing Text Files
	Reading and Writing Text Files
	Reading and Writing Text Files
	Reading and Writing Text Files
	Reading and Writing Text Files
	Reading and Writing Text Files
	Example: Counting Numbers
	Example: Counting Numbers
	Example: Counting Numbers
	Buffered Streams
	Buffered Streams
	Buffered Streams
	Buffered Streams
	Buffered Streams
	Buffered Streams
	Example: Counting Letters
	Example: Counting Letters
	Example: Counting Letters
	Example: Counting Letters
	Example: Counting Letters
	Example: Counting Letters

