
CSC 1051 Algorithms & Data
Structures I

Methods & Arrays

2

MORE WITH METHODS

Method Overloading

Method overloading is a technique in which two or more
methods in a class can have the same name

The compiler must be able to figure out which method is being
called by analyzing the parameter list

A method signature is the name of the method along with the
types of its parameters

All method signatures in a class must be unique

That means the names can be the same as long as the number,
types, and order of the parameters are distinct

3

Method Overloading

For example:

4

public void setCoordinates(int x, int y)
{

// whatever
}

public void setCoordinates(Point p)
{

// whatever
}

The signatures for these methods are
setCoordinates(int, int)
setCoordinates(Point)

Method Overloading

Suppose the following invocation is made:

5

target.setCoordinates(13, 58);

The compiler would map this invocation to the version of the
method that takes two int parameters

Method overloading is appropriate in situations where the same
operation is being applied to different data

Constructors are often overloaded

Method Overloading

Another example:

6

public static int add(int i, int j)
{

return i + j;
}

public static double add(double i, double j)
{

return i + j;
}

public static double add(double i, double j, double k)
{

return i + j + k;
}

Method Overloading

The signatures of those methods are
add(int, int)
add(double, double)
add(double, double, double)

The compiler looks for the most specific match it can find

If two or more methods are equally appropriate, the compiler
will issue an error (ambiguous invocation)

The return type is NOT part of the method signature

Overloaded methods cannot differ only by their return type

7

Method Overloading

The print and println methods are overloaded several times

Each version takes a single type as a parameter
println(int)
println(double)
println(String)

etc.

So the following two calls invoke different methods

8

System.out.println("Hello there!");
System.out.println(total);

Collections Overview

A collection is an object that manages a group of other objects.

The collection classes defined in the Java API are some of the
most useful and versatile.

Each type of collection manages objects in a particular way:

• List – list of elements you an add, remove or replace

• Queue – list you can only add on one end & remove on other

• Stack – list where you add and remove only on one end

• Map – collection that uses keys to lookup values

• Set – unordered collection of unique elements

9

Collections Framework

Collections in Java are organized by a design architecture
known as the Collections Framework.

The framework includes a set of Java interfaces that define the
operations on a collection, as well as one or more classes that
implement the interfaces.

Java Collections are defined in the java.util package.

10

Collections vs. Data Structures

These two terms sometimes get used interchangeably.
For our purposes, they are defined as:

collection - manages a group of objects in a particular
way

data structure - the programming technique used to
implement a collection

The collection is the concept and the data structure is
how it gets done.

11

Collections are Generic

All Java collection classes are generic.

A generic class is a class that specifies the type of data the class
manages using a placeholder.

For example, the ArrayList class is named ArrayList<E>,
where the E is a placeholder for the type of element to be
stored. It is used like this:

12

ArrayList<String> nameList = new ArrayList<String>();

The for-each loop

Traversing a collection is made easy by the for-each statement,
which is a variation of the for loop:

13

for (Member mem : memberList)
{

System.out.println(mem.getName());
System.out.println(mem.getMembershipNumber());

}

On each iteration of the loop, the variable mem is assigned the
next Member object from the list, starting with the first one.
The loop repeats until the last object in the list is used.

WORKING WITH ARRAYS

Arrays

An array is an object that holds a set of values

Each value can be accessed by a numeric index

An array of length N is indexed from 0 to N-1

15

The scores array can hold 10 integers, indexed from 0 to 9
The name of the array is an object reference variable

Arrays

Square brackets (the index operator) are used to refer to a
specific element in the array

16

An exception is thrown if you attempt to access an array
outside of the range 0 to N-1
This is called a bounds error
Each element of scores can be treated as an individual
integer

int num = scores[3];

scores[7] = 83;

Arrays

The object reference variable is declared without specifying the
size of the array

17

The variable scores can refer to any array of integers
The array size is specified when the array object is created

int[] scores;

scores = new int[10];

As with other objects, those two steps may be combined

int[] scores = new int[10];

Arrays

In Java it is valid to associate the brackets with the
array name in a declaration

18

int myList[];

However, this is not a good idea
It is far more readable to associate the brackets with the
element type

int[] myList;

Together, they define the type of the variable (an array of int)

Arrays

The array's element type is the type of values it stores

An array can be declared to hold any primitive or object type

Only values consistent with the element type can be stored in it

19

int[] widths = new int[500];
double[] myArray = new double[20];
boolean[] flags = new boolean[80];
String[] names = new String[150];

When an array is created it is filled with the default value for
the element type

Arrays

The size of an array is stored in a constant called length

Once an array has been created, its size cannot change

The for and for-each loops are often used when processing arrays

20

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

int[] list = new int[15];

for (int i = 0; i < list.length; i++)
list[i] = i * 10;

for (int value : list)
System.out.print(value + " ");

Arrays

Modifying particular elements of that array:

21

50 10 20 999 40 50 60 70 80 90 100 110 270 130 140

list[3] = 999;
list[0] = list[5];
list[12] = list[13] + list[14];

for (int value : list)
System.out.print(value + " ");

Arrays

An array can also be created using an initialization list, which both
creates the array and fills it with values

22

int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71};

If an initialization list is used, the new operator is not
The array size is determined by the number of elements
in the list

The for-each Statement

Both arrays and collections allow you to manage multiple
values in a single object

It's often necessary to traverse the elements – access them
one at a time

A for-each statement traverses the elements of an array or
collection without using an index variable

It's often more convenient than a standard for loop

23

The for-each Statement

24

That loop would be read "for each number in list…"

int[] list = {44, 88, 11, 77, 55, 66, 33, 99, 22};

for (int number : list)
System.out.println(number);

44
88
11
77
55
66
33
99
22

The for-each Statement

Suppose library is a collection (such as an ArrayList) of Book
objects

25

for (Book book : library)
{

System.out.println(book.getTitle());
System.out.println(book.getAuthor());
System.out.println();

}

The condition of a for-each loop is implied—the loop
continues as long as there are elements to process

The for-each Statement

A for-each loop is often convenient, but it has limitations

You can't, for instance, use it set the values in an array

26

for (int element : list)
element = 0;

All this does is overwrite the value of the variable element
The for-each loop is also not helpful if you want to traverse
the elements backwards, or visit every other one, for
instance
The standard for loop is better in those situations

Arrays of Objects

An array can have elements that are primitive values or
objects. An array of objects uses the class name as the element
type.

Creating an array of objects looks like this:

27

String[] words = new String[5];

This array is declared to hold 5 strings, but it doesn't have any
values yet.

Filling an Array

To fill the array of objects, an object is assigned to each
element of the array, like this:

28

words[0] = "hullaballoo";
words[1] = "sozzled";
words[2] = "lollygag";
words[3] = "flabbergast";
words[4] = "skirl";

Since array indexes are numbered starting with 0, the last
element is 1 less than the length of the array.

Iterating an Array

To iterate through the array of objects, the for-each loop
makes it simple:

29

for (String word : words)
System.out.println(word.toUpperCase())

Each element in turn is assigned to word, converted to
uppercase, and then printed.

HULLABALLOO
SOZZLED
LOLLYGAG
FLABBERGAST
SKIRL

Another Initialization

30

An initialization list is an alternate way to create a fill an array
of objects.

String words[] = {"hullaballoo", "sozzled",
"lollygag", "flabbergast", "skirl" };

This allows the array to be created and initialized in a single
step.

Arrays of Person Objects

Here's another example where an array of objects contains
Person objects rather than strings:

31

Person[] athletes = new Person[4];

athletes[0] = new Person("Michael", "Jordon");
athletes[1] = new Person("Babe", "Ruth");
athletes[2] = new Person("Martina", "Navratilova");
athletes[3] = new Person("Wayne", "Gretzky");

for (Person athlete : athletes)
System.out.println(athlete.getLastName() + ", " +

athlete.getFirstName());

The array is created, initialized, and the elements are printed.

	CSC 1051 Algorithms & Data Structures I
	More with Methods
	Method Overloading
	Method Overloading
	Method Overloading
	Method Overloading
	Method Overloading
	Method Overloading
	Collections Overview
	Collections Framework
	Collections vs. Data Structures
	Collections are Generic
	The for-each loop
	Working with Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	The for-each Statement
	The for-each Statement
	The for-each Statement
	The for-each Statement
	Arrays of Objects
	Filling an Array
	Iterating an Array
	Another Initialization
	Arrays of Person Objects

