
CSC 1051 Algorithms & Data
Structures I

Designing Classes &
Encapsulation

2

DESIGNING CLASSES

Class Anatomy

A class that contains a static main method represents the driver
of a program

Let's look at a class that defines a classic object (with state and
behavior)

The anatomy of a class includes

instance data
constructor(s)
methods

3

Class Anatomy

A tally counter is a device that helps you count people (as they
enter a room, for example)

It's used to track the number of occupants at an event

It has a button that increments a counter every time it's clicked,
and a way to reset that counter to 0

We will model the idea of a tally counter in
software by defining a class called Counter

4

Class Anatomy

The only data defined in Counter is a single int variable

5

public class Counter
{

private int count;

// the rest of the class is defined here

}

The variable count is called instance data, because each instance
of the class (each object) has its own

Every time a Counter object is created, memory space is reserved
to store the count for that object

Instance Data

Class Anatomy

Instance data allows each object to have its own state

6

Remember, a class is the pattern from which an object is made

The variable is declared once in the class, representing the
integer in each Counter object

Class Anatomy

A variable declared at the class level can be accessed by any
method in the class

Declaring the count variable as private keeps other objects
from directly accessing it

That way, the value of count is only changed by methods of the
Counter class

This is the basis of encapsulation

7

Class Anatomy

The public methods of the Counter class define its behavior

They are the services that a Counter object will perform when
they are called by another object

8

// Increments the counter when "clicked"
public void click()
{

count++;
}

The click method takes no parameters and returns no value

Class Anatomy

Two more Counter methods:

9

// Resets the count back to 0
public void reset()
{

count = 0;
}

// Returns the current count of this Counter
public int getCount()
{

return count;
}

Class Anatomy

10

// Returns the current count as a string
public String toString()
{

return count + "";
}

It's often a good idea to define a toString method for a class

toString is automatically called when you print an object or
concatenate an object to a string

Concatenating count to the the empty string is a quick way to
convert the number to a string

Class Anatomy

A constructor is like a special method that is called when an
object is created

11

// Initializes the count to 0
public Counter()
{

count = 0;
}

A constructor sets up a newly created object

It has no return type (not even void) and has the same name as
the class

Example: Dice

Let's examine another class that defines a classic object

A die (singular of dice) might have the traditional six sides, or it
may be more specialized

12

So the instance data of a Die class would track how many sides
a die has and what value is currently showing

Explore Example: Dice in Rephactor.

Unified Modeling Language (UML)

UML stands for the Unified Modeling Language

UML diagrams show relationships among classes and objects

A UML class diagram consists of one or more classes, each with
sections for the class name, attributes (data), and operations
(methods)

Lines between classes represent associations

A dotted arrow shows that one class uses the other (calls its
methods)

UML Class Diagrams

A UML class diagram for a Vehicle class:

class name

attributes

operations

Showing Inheritance

The arrow shows inheritance.
base class

derived class

This child class
inherits attributes
and operations from
base or parent class

References and Inheritance

An object reference can refer to an object of its class, or to
an object of any class related to it by inheritance

For example, if the Vehicle class is used to derive a class
called MotorVehicle, then a Vehicle reference could
be used to point to a MotorVehicle object

Vehicle vehicle;
vehicle = new MotorVehicle();

System.out.println(vehicle.getMake());

UML Class Diagrams

Class hierarchies can show multiple levels of inheritance.
parent class

child classes

grandchild classes

Object Equality

The following code creates three java.awt.Point objects and
four Point reference variables:

18

Point p1 = new Point(4, 7);
Point p2 = p1;
Point p3 = new Point(4, 7);
Point p4 = new Point(5, 12);

Object Equality

There are two types of object equality: reference equality and
value equality

Two objects have reference equality if they point to the same
object (like p1 and p2)

Two objects have value equality if they contain the same data
(like p1 and p3)

19

Object Equality

Reference equality is determined by the == operator

Value equality is determined by the equals method

20

if (obj1 == obj2)
System.out.println("Same object.");

if (obj1.equals(obj2))
System.out.println("Equivalent content.");

The designer of a class gets to determine what it
means for two objects to be equal

Object Equality

The equals method of the String class has been written to
compare the characters in the string

Case matters ("Program" is not equal to "program")

But String also has an equalsIgnoreCase method

21

if (str1.equalsIgnoreCase(str2))
System.out.println("Differ only by case.");

Object Equality

String literals with the same characters are mapped to the
same object, which can lead to strange behavior

22

String s1 = new String("Java");
String s2 = "Java";

Both would be equal to "Java" according to the equals
method
Bottom line: always use the equals method to compare
strings

s1 == "Java" false

s2 == "Java" true

Object Equality

Following a null reference will cause an exception to be thrown

Use the == or != operator to avoid following a null reference

23

if (name != null)
System.out.println(name.toUpperCase());

A null string reference is different than an empty string (""),
which is a valid string of length 0

ENCAPSULATION

Encapsulation

Encapsulation is the principle that a class should protect its
data from unnecessary access

This is about good design – creating software using elements
that have limited, controlled interaction with other elements

If an object is encapsulated, problems are localized and easier
to find and fix

Code that interacts with an object is a client of that object

Encapsulation ensures that a client cannot "reach in" and
change the values of instance variables directly

25

Encapsulation

From the client's point of view, an object should be a black box

The client doesn't need to know exactly what data is managed
by an object or how it's organized

26

Instead, the client interacts with an object through its public
interface – the set of methods a client can call

Encapsulation

A client shouldn't be able to set the balance of a bank account
directly

In Java, encapsulation is accomplished using appropriate access
modifiers, also called visibility modifiers

By declaring the account balance to be private, it can only be
accessed and changed by methods in its class

27

Encapsulation

An accessor method is a method that provides the client with the
value of an instance variable

Some accessor methods take the form getX, where X is the
attribute – this is also called a "getter" method

28

public double getBalance()
{

return balance;
}

Encapsulation

Methods that modify instance data are mutator methods

They might be classic "setters"

29

public void setName(String newName)
{

name = newName;
}

Unconditional mutators are almost as bad as public variables,
but at least they are explicitly defined as such
The deposit and withdraw methods of a bank account are
mutators because they change the balance
Some methods are both accessors and mutators

Example: Person

Explore Example: Person topic in Rephactor

Things to look for:

• public class Person – the declaration and "name" of the class

• instance data or fields – the "attributes"

• getters and setters – "operations" to get or set attributes,
sometimes called accessors

• other methods – more "operations"

30

Method Anatomy

A method declaration defines the code that is executed when
the method is called

A method must be declared inside a class

A method declaration consists of the method header followed
by the method body

The method header includes modifiers, the return type, the
method name, and the parameter list

The method body is enclosed in { } and contains the statements
that will be executed each time the method is invoked

31

Method Anatomy

If a method doesn't return a value, it's return type is void

This method takes no parameters and returns no value:

32

public void printLyrics()
{

System.out.println("Is this the real life?");
System.out.println("Is this just fantasy?");
System.out.println("Caught in a landslide,");
System.out.println("No escape from reality.");

}

Method Anatomy

A return statement is used to return a value from the method

Its expression must be consistent with the return type

33

public String getGreeting()
{

return "Hello! Glad you could join us!";
}

If a method doesn't return a value, the return statement is
usually omitted
A method automatically returns when it reaches the end of
the method body

Method Anatomy

A parameter is specified using a type and a name

The parameter serves as a temporary variable in the method
and takes on the value passed to it

34

public static String getGreeting(String name)
{

return "Hello, " + name + "! Glad you could join us!";
}

The parameters in the method header are formal
parameters
The values passed in by the calling method are called
actual parameters or arguments

Method Anatomy

If the method is called from the main method, it must also be
declared as static

35

public static void main(String[] args)
{

System.out.println(getGreeting("Ike"));
System.out.println(getGreeting("Tina"));

}

public static String getGreeting(String name)
{

return "Hello, " + name + "! Glad you could join us!";
}

Hello, Ike! Glad you could join us!
Hello, Tina! Glad you could join us!

Method Anatomy

Parameters and the return type can be any primitive or object
type

36

public double circleArea(int radius)
{

return Math.PI * radius * radius;
}

Method Anatomy

Multiple parameters are separated by commas

Each parameter has its own type

37

public int max(int num1, int num2)
{

if (num1 > num2)
return num1;

else
return num2;

}

When a return statement is executed, the method returns
immediately

Method Anatomy

This method returns true if the first parameter is evenly
divisible by the second

It also checks to see if the second parameter (the divisor) is
zero

38

public boolean isDivisible(int num1, int num2)
{

if (num2 == 0)
return false;

else
return (num1 % num2 == 0);

}

Example: Bank Account

Let's examine a class that defines a bank account

Our simplified account will only manage an account number
and the current balance

Explore the Example: Bank Account topic in Rephactor.

39

	CSC 1051 Algorithms & Data Structures I
	Designing Classes
	Class Anatomy
	Class Anatomy
	Class Anatomy
	Class Anatomy
	Class Anatomy
	Class Anatomy
	Class Anatomy
	Class Anatomy
	Class Anatomy
	Example: Dice
	Unified Modeling Language (UML)
	UML Class Diagrams
	Showing Inheritance
	References and Inheritance
	UML Class Diagrams
	Object Equality
	Object Equality
	Object Equality
	Object Equality
	Object Equality
	Object Equality
	Encapsulation
	Encapsulation
	Encapsulation
	Encapsulation
	Encapsulation
	Encapsulation
	Example: Person
	Method Anatomy
	Method Anatomy
	Method Anatomy
	Method Anatomy
	Method Anatomy
	Method Anatomy
	Method Anatomy
	Method Anatomy
	Example: Bank Account

