
CSC 1051 Algorithms & Data
Structures I

Classes, Objects, Selection
& More Repetition

2

OBJECTS & CLASSES

CSC 1051

Objects and Classes

An object is a fundamental program component

It represents something in terms of attributes and behaviors

Potential attributes of a car:

make, model, color, current speed, current direction

Potential behaviors of a car:

accelerate, stop, change gears, turn

Which attributes and behaviors are actually represented
depends on what the system does

A car object in a racing game would be different than a car
object in a dealer inventory system

3

Objects and Classes

An object is defined by a class

A class is:
the type of the object
the pattern from which it is created

You might write a class called Car and then create many Car
objects using it

The word class comes from the word classification
A class represents a group of similar objects
An object is an instance of a class

Each object has its own instance data that represents its
attributes

4

Objects and Classes

An object has three properties

identity – the way you specify an individual object
A reference variable is the object's identity in a program

state – the values of its instance data
One car: green Honda CRV heading northeast at 55 MPH
Another car: black Ford Focus heading south at 40 MPH

behavior – the list of services an object can perform
The methods you can invoke on an object define its behavior
(also known as its public interface)

5

Objects and Classes

A class is like the blueprint of an object

6

The concept The realization

You can't live in a blueprint, but it defines the house

Houses made from the same blueprint are the same type of
house, but have room for different furniture and families

Objects and Classes

A class defines the types of data an object will have and
determines how that data will be organized

But it doesn't reserve any memory space for it until an object
is created

Each object has its own memory space and therefore its own
state

The class contains the code for the methods that define an
object's behavior

But the methods are called through a particular object, which
determines which data is used and updated

7

Creating Objects

The java.awt.Point class represents a two-dimensional x, y
coordinate

To create a Point object, we use the new operator

8

Point p = new Point(4, 7);

A call to the object's constructor sets up the new object

A constructor is like a method that initializes instance data
and whatever else is necessary to get the object ready to use

A constructor has the same name as the class

Creating Objects

9

These activities are often combined this way, but
they don't have to be

Creating Objects

If a reference variable is null, it doesn't refer to any object

10

Point target = null;

Later on, it can be assigned an object

target = new Point(12, 15);

Creating Objects

Beware the null reference!

Following a null reference will cause a NullPointerException to
be thrown

11

if (myPoint != null)
x = myPoint.getX();

When in doubt, check to see if a reference is null

Point nowhere = null;
double x = nowhere.getX();

Creating Objects

Multiple references can refer to the same object

12

Point p2 = target;

They are sometimes referred to as aliases of each
other

Changes made to one affect the other because they
are the same object

Creating Objects

You can create a String object with the new operator

13

String name = new String("George R. R. Martin");

But a double quoted string literal already represents a
String object, so you can just do this:

String name = "George R. R. Martin";

And even this:

System.out.println("alakazam!".toUpperCase());

ALAKAZAM!

Example: Palindromes

A palindrome is a string that reads the same forwards and
backwards

radar
kayak

deified
drab bard

able was I ere I saw elba

Goal: determine if a string is a palindrome

For now, spaces, punctuation, and differences in case all affect
the conclusion

14

The import Statement

Classes in the Java API is part of a particular package

String is in the java.lang package
Random is in the java.util package

A package is a group of related classes

A class can always be referred to by its fully qualified name

java.util.Random

Package organization allows two classes to have the same name,
such as

java.util.Timer and java.awt.Timer

15

The import Statement

16

Random gen = new Random();

Using the fully qualified name is not always convenient:

An alternative is to import the class
Import statements go above the class that uses them

import java.util.Random;

Then the simple name can be used throughout the
program:

java.util.Random gen = new java.util.Random();

The import Statement

17

import java.util.*;

Classes from the java.lang package are automatically
imported
That's why we don't import classes like System or String
If you're going to use multiple classes from a package,
you can use the * wildcard character:

18

THE JAVA API

CSC 1051

The Math Class

Numeric expressions often rely on methods of the Math class

The Math class is part of the java.lang package, so does not
have to be imported

You don't (can't) make an object of type Math

The methods in the Math class are static, so are called through
the class

19

double result = Math.abs(num) + Math.pow(count, 3);

The Math Class

The Math class also contains two useful public constants

20

Constant Value

Math.PI 3.141592653589793

Math.E 2.718281828459045
π

Base of the
natural log

double circumference = 2 * Math.PI * radius;

The Math Class

Absolute value, minimum and maximum

21

Math.abs(5)
Math.abs(-7.34)

5
7.34

Math.min(35, 12)
Math.min(-18.5, -7)

12
-18.5

Math.max(28, -5)
Math.max(-7.4, -12.2)

28
-7.4

The Math Class

Rounding, floor (nearest integer less than), and ceiling (nearest
integer greater than)

22

Math.round(15.33)
Math.round(15.7)
Math.round(7.5)

15
16
8

Math.floor(8.2)
Math.floor(8.9)
Math.floor(-5.2)

8.0
8.0
-6.0

Math.ceil(8.2)
Math.ceil(8.9)
Math.ceil(-5.2)

9.0
9.0
-5.0

The Math Class

Square root and exponentiation (raising to a power)

23

Math.sqrt(25)
Math.sqrt(30)
Math.sqrt(123.45)

5.0
5.477225575051661
11.110805551354051

Math.pow(2, 3)
Math.pow(2.5, 3.5)
Math.pow(-1.5, 3)

8.0
24.705294220065465

-3.375

The Math Class

The Math.random method returns a random number in the
range 0.0 (inclusive) to 1.0 (exclusive)

24

Math.random()
Math.random()

0.7264869439957039
0.42153058405914756

The Random class offers other methods for creating
random numbers

Random Numbers

A random number generator is an object that produces a stream
of pseudorandom numbers

They are based on a seed value that factors into a set of
calculations

To the user, they certainly appear random

Two mechanisms for generating random numbers in Java:

Random class

Math.random method

25

Random Numbers

The Random class has several methods for generating random
numbers

The nextInt method accepts an argument N and returns an
integer in the range 0 to N-1

26

Random generator = new Random();
int num = generator.nextInt(10);

The variable num now contains a single integer between 0
and 9, inclusive
There's an equal probability of getting any value in that range

Random Numbers

The argument to nextInt is called a scaling factor because it
determines the size of the range of values

A shift value can also be added to shift the starting point of the
range

27

num = generator.nextInt(50) + 1;

The call to nextInt returns a value between 0 and 49, which
is then shifted into the range 1 to 50

Random Numbers

In general, a scale factor of X and a shift value of Y produces an
integer in the range Y to X + Y – 1

28

Expression Range

generator.nextInt(100) 0 to 99

generator.nextInt(256) 0 to 255

generator.nextInt(6) + 1 1 to 6

generator.nextInt(20) + 100 100 to 119

generator.nextInt(50) - 10 -10 to 39

generator.nextInt(10) - 50 -50 to -41

Random Numbers

The seed value (a long integer) can be set for a Random object
by passing it into the constructor

29

Random generator = new Random(54321);

The Random class also has a setSeed method
The seed value determines exactly the stream of numbers
that will be produced

Random Numbers

The Math.random method returns a random double value in
the range 0.0 to 1.0 (excluding 1.0)

It is essentially the same as the nextDouble method of the
Random class, except you don't have to create an object first

30

System.out.println(Math.random());

The seed cannot be explicitly set for the Math.random
method (it uses the system time as the seed)

0.7251182764665118

Random Numbers

A random floating-point value can be converted to an integer in
a particular range with a calculation

31

int num = (int) (Math.random() * 10);

Multiplying the random value by 10 (the scaling factor), then
casting it to an int results in an integer in the range 0 to 9
Adding a shift value shifts the range
To produce a random number in the range 6 to 35:

num = (int) (Math.random() * 30) + 6;

32

SELECTION & MORE
REPETITION

CSC 1051

Example: The High-Low Game

The user guesses a predetermined number in as few guesses as
possible

The set up:

33

Scanner in = new Scanner(System.in);
Random generator = new Random();

int target = generator.nextInt(100) + 1;
int guess = -999; // initial value out of range
int count = 0;

System.out.println("I've chosen a number " +
"between 1 and 100.");

The do-while Statement

A do-while statement is another Java repetition statement

It uses the keywords do and while, with the condition shown
after the body of the loop

The condition governing the loop is not evaluated until after
the body is executed

Therefore, the body of a do-while loop is executed at least once
(unlike the while loop)

34

The do-while Statement

35

int num = 0;

do
{

num++;
System.out.println(num);

}
while (num < 5);

System.out.println("Now here.");

1
2
3
4
5
Now here.

The do-while Statement

Comparing the while loop and the do-while loop:

36

The do-while Statement

Using a do-while loop for input validation

37

Scanner in = new Scanner(System.in);
double num;

do
{

System.out.print("Enter a number greater than 100: ");
num = in.nextDouble();
if (num <= 100)

System.out.println("Invalid number.");
}
while (num <= 100);

System.out.println("Moving on...");

The do-while Statement

The do-while loop is simply not used that often in production
code

It's often just as easy to use a while loop
The use of the while keyword can be misread

Many developers simply avoid using it

38

For Statement

A for statement is a loop that works well when you know or can
calculate how many iterations need to be performed

The for loop header contains three sections separated by
semicolons

39

for (int num = 1; num <= 10; num++)
System.out.println(num);

Initialization Condition Increment

The control variable is often declared in the initialization
section, but doesn't have to be

For Statement

40

for (int num = 1; num <= 10; num++)
System.out.println(num);

System.out.println("Now here.");

1
2
3
4
5
6
7
8
9
10
Now here.

For Statement

41

For Statement

The for statement is compact and often convenient

Equivalent code could always be written as a while loop

42

For Statement

The increment section does not have to increment

43

for (int i = 20; i > 0; i--)
System.out.print(i + " ");

System.out.println();
System.out.println("Now here.");

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Now here.

For Statement

Printing the powers of two less than 1000:

44

for (int num = 2; num < 1000; num *= 2)
System.out.print(num + " ");

System.out.println();
System.out.println("Now here.");

2 4 8 16 32 64 128 256 512
Now here.

For Statement

Printing a triangle made of asterisks:

45

for (int line = 1; line <= 7; line++)
{

for (int asterisk = 1; asterisk <= line; asterisk++)
System.out.print("*");

System.out.println();
}

*
**

The outer
loop's control

variable

Conditional Expressions

A conditional expression evaluates a boolean condition and
returns one of two results

So instead of writing this:

46

if (y > 0)
x = 1;

else
x = -1;

You could perform the same task with one assignment:

x = (y > 0) ? 1 : -1;

Conditional Expressions

The conditional operator (?:) is used like this:

condition ? expression1 : expression2

First, the boolean condition is evaluated

If it's true, then the result of expression1 is returned

If not, the result of expression2 is returned

It's a ternary operator (three operands)

It's the only operator in Java whose characters can be separated

47

Conditional Expressions

This example assigns the larger of x1 and x2 to the variable
bigger:

48

bigger = (x1 > x2) ? x1 : x2;

This statement prints the appropriate word depending
on the value of num:

System.out.println(num + " " (num == 1 ? "box" : "boxes"));

1 box

5 boxes

You usually
don't need

parentheses

Switch Statement

Like an if statement a switch statement lets you determine
which statement is executed next

The expression in the switch header is evaluated and
processing continues with the first matching case

If a break statement is executed, processing jumps to the
statement following the switch

An optional default case can be specified in the event no case
matches

49

Switch Statement

50

switch (dayNum)
{

case 1:
day = "Sunday";
break;

case 2:
day = "Monday";
break;

case 3:
day = "Tuesday";
break;

...
case 7:

day = "Saturday";
break;

default:
System.out.println("Invalid.");

}

Switch Statement

A switch statement is restricted in various ways

Case values must be constants – they cannot be variables or
expressions

The switch expression must evaluate to an int, char,
enumeration constant, or (as of Java 7) a String

A switch only tests equality – you cannot make relational
comparisons such as less than (<)

51

Switch Statement

If a break statement is not used to terminate a case, processing
continues into the next case

52

switch (letter)
{

case 'A':
System.out.println("here");

case 'B':
System.out.println("there");
break;

case 'C':
...

}

No break
statement

Switch Statement

Sometimes, this fall through behavior is helpful, but should be
documented

53

switch (dayNum)
{

case 2: // fall through
case 4: // fall through
case 6:

System.out.println("M/W/F Schedule");
break;

case 3: // fall through
case 5:

System.out.println("T/Th Schedule");
break;

default:
System.out.println("Weekends rock!");

}

Switch Statement

The functionality of a switch can always be accomplished with a
nested if statement

54

	CSC 1051 Algorithms & Data Structures I
	Objects & Classes
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Creating Objects
	Creating Objects
	Creating Objects
	Creating Objects
	Creating Objects
	Creating Objects
	Example: Palindromes
	The import Statement
	The import Statement
	The import Statement
	The Java API
	The Math Class
	The Math Class
	The Math Class
	The Math Class
	The Math Class
	The Math Class
	Random Numbers
	Random Numbers
	Random Numbers
	Random Numbers
	Random Numbers
	Random Numbers
	Random Numbers
	Selection & More Repetition
	Example: The High-Low Game
	The do-while Statement
	The do-while Statement
	The do-while Statement
	The do-while Statement
	The do-while Statement
	For Statement
	For Statement
	For Statement
	For Statement
	For Statement
	For Statement
	For Statement
	Conditional Expressions
	Conditional Expressions
	Conditional Expressions
	Switch Statement
	Switch Statement
	Switch Statement
	Switch Statement
	Switch Statement
	Switch Statement

