
CSC 1051 Algorithms & Data
Structures I

Control Structures & Data
Representation

2

CONDITIONALS & CONTROL
FLOW

CSC 1051

3

If Statement
 An if statement is used to make a decision
 In particular, it is used to determine which program

statement to execute next
 It evaluates a boolean condition and only executes the

body of the if statement if the condition is true

if (side > 0)
perimeter = 4 * side;

The if statement is sometimes referred to as a selection
statement or a conditional statement

4

If Statement
 The logic of an if statement can be represented as a

flowchart

5

If Statement
 Another example:

if (total < MAX)
System.out.println("The total is within limits.");

The body of an if statement is often a block statement enclosed
in braces

if (side > 0)
{

perimeter = 4 * side;
System.out.println("The perimeter is " + perimeter);

}

6

If Statement
 Syntactically, the body of an if

statement is a single statement
 Use a block statement if needed

The println statement is not part of the if
statement body, despite the indentation

Some programming conventions
recommend always using braces

if (side > 0)
perimeter = 4 * side;
System.out.println("The perimeter is " + perimeter);

7

If Statement
 An optional else clause specifies what should be done

if the condition is not true

if (side > 0)
perimeter = 4 * side;

else
System.out.println("Invalid side value.");

8

If Statement
 The body of the if, the else, or both can be block

statements, surrounded by braces.

if (side > 0)
{

perimeter = 4 * side;
System.out.println("The perimeter is " + perimeter);

}
else

System.out.println("Invalid side value.");

9

If Statement
 A nested if statement occurs when the body of an if

statement is itself an if statement

if (pendingOrders > 0)
if (stock < MIN_STOCK)

System.out.println("Reorder stock.");

Both conditions must be true for the println statement to be
executed

10

If Statement
 An else clause is matched to the closest unmatched if
 That creates potential for the dangling else problem

Despite the indentation, the else is matched to the second
(nested) if statement

if (total >= 0)
if (result >= 0)

System.out.println("Both are positive.");
else

System.out.println("Total is negative");

11

If Statement
 Braces can be used to ensure the else is matched with

the correct if statement

if (total >= 0)
{

if (result >= 0)
System.out.println("Both are positive.");

}
else

System.out.println("Total is negative.");

12

If Statement
 A series of nested ifs are often formatted as follows to

increase readability

if (score >= 90)
grade = 'A';

else if (score >= 80)
grade = 'B';

else if (score >= 70)
grade = 'C';

else if (score >= 60)
grade = 'D';

else
grade = 'F';

13

If Statement

14

Example: Paycheck Calculator

 Walk-thru the Rephactor topic Example: Paycheck Calculator

15

A Practical Use of an If Statement
 Let's say you have some number of things and you

want to print a grammatically correct output statement.
That's a perfect job for an if statement!

int count = 73;

if (count == 1)
System.out.println(count + " gold bar");

else
System.out.println(count + " gold bars");

This is a frequently needed thing to do. Remember it!

Why do we need Boolean Expressions?

qp = scan.nextDouble();

credits = scan.nextDouble();

gpa = qp / credits

public class GPACalculator

{

public static void main(String[] args)

{

double qp, credits, gpa;

Scanner scan = new Scanner(System.in);

System.out.print ("Quality Points> ");

qp = scan.nextDouble();

System.out.print ("Credits> ");

credits = scan.nextInt();

// calculate GPA

gpa = qp / credits;

System.out.println ("\n\tGPA: " + gpa);

}

}

Quality Points> 22.5
Credits> 0

Runtime Error!

What if credits is 0?

16

Boolean Expression to the Rescue!

We can prevent some badness by adding add logical conditions
to protect certain statements. Here's the pseudocode:

If credits equals 0

print “No GPA”

Else

calculate GPA by formula

print GPA results

17

Boolean Expression
If statement

Boolean Expressions

A boolean expression is an expression that evaluates to either
true or false

The result could be assigned to a boolean variable:

18

boolean countExceeded = count > MAX;

More often, a boolean expression is used as the condition of
an if statement or a loop

if (count > MAX)
System.out.println("Maximum count exceeded.");

Boolean Expressions

A relational operator tests the relationship between two values

19

Evaluate these Boolean expressions

Evaluate the values of expressions, if no value, write down the
reasons:

20

Expression Value

1 == 1.0

5 < 11/2

‘a’ == ‘a’

‘a’ < ‘A’

”a” > “A”

3 >= 3

true != false

true > false

Expression Value

1 == 1.0 True, the value equals
5 < 11/2 False, 11/2 is 5, 5 equals 5
‘a’ == ‘a’ True
‘a’ < ‘A’ False, Unicode: ‘a’ == 97, ‘A’ = 65
”a” > “A” No value, String type cannot be applied
3 >= 3 True

true != false True
true > false No value, boolean type cannot be applied

Boolean Expressions

The relational operators have a lower precedence than the
arithmetic operators

21

The two numbers are added first, and the result is compared
to the value of total

if (total > localCount + globalCount)
System.out.println("Total exceeds full count.");

Boolean Expressions

Characters can be compared using the relational operators

A character is less than another if it comes before it (has a lower
value) in the Unicode character set

Most of the relational operators cannot be applied to objects

To put strings in order, use the compareTo method

The equal to (==) and not equal to (!=) operators can be used on
objects, but only to determine if two references point to the same
object

22

Boolean Expressions

It's unwise to test two floating-point values for equality using
the == operator

23

if (d1 == d2)
System.out.println("They are equal.");

That will only be true if the underlying binary representation
of d1 and d2 are exactly the same

If they are the results of calculations, there is a good chance
they won't be equal (even if they are very close)

Boolean Expressions

For example:

24

double num = Math.sqrt(2) * Math.sqrt(2);

System.out.println(num);

if (num == 2.0)
System.out.println("Equal!");

The string "Equal!" is not printed, because they aren't

2.0000000000000004

Boolean Expressions

A better approach is to see if they are "close enough"

Set up a tolerance value and compare it to the difference
between the two values

25

final double TOLERANCE = 1E-14; // 0.00000000000001

double num = Math.sqrt(2) * Math.sqrt(2);

if (Math.abs(num - 2.0) < TOLERANCE)
System.out.println("Close enough!");

Boolean Operators

Multiple conditions can be combined using boolean operators
to create more complex boolean expressions

For example, to determine if a value is in the range 1 to 100:

26

Boolean operators take boolean operands and produce boolean
results

The and operator (&&) produces a true result if both of its
operands are true

if (num >= 1 && num <= 100)
System.out.println("In range.");

Boolean Operators

Java has four boolean operators

27

The boolean operators are sometimes called logical operators

The results of a boolean operator can be shown in a truth table,
which shows all possible true/false combinations

Boolean Operators

The not operator (!) is a unary operator – it has only one
operand

It negates (reverses) the truth value of it's operand

28

if (!found)
System.out.println("Keep looking.");

if (!name1.equals(name2))
System.out.println("Not the same name.");

Boolean Operators

The and operator (&&) produces a true result only if both of its
operands are true

29

if (num > 0 && num % 2 == 0)
System.out.println("Positive and even.");

Boolean Operators

The or operator (||) produces a true result if either or both of
its operands are true

30

if (width > 20 || height > 50)
System.out.println("Too big.");

Boolean Operators

The exclusive or operator (^) produces a true result if either of
its operands are true but not both

31

if (chooseTea ^ chooseCoffee)
System.out.println("Good choice.");

Boolean Operators

The && and || operators are short-circuited – if the result can
be determined by the first operand, the second is not evaluated

If the first operand to a && operator is false, it doesn't matter
what the second operand is

32

if (name != null && name.equals("Sam"))
System.out.println("That's the guy.");

else
System.out.println("It's not Sam.");

The name reference won't be used if it is null

33

REPETITION

CSC 1051

34

Flow of Control
 The order in which the statements of a program are

executed is called the program's flow of control.
 The flow of control determines what happens next in a

program.
 Unless told otherwise, a program executes statements in

a linear fashion:

35

Flow of Control
 When a method is called, the flow jumps to the method.
 When complete, the flow returns to the location where

the method was called.

36

Flow of Control
 A conditional statement, such as an if statement,

evaluates a condition to determine what to do next.

if (total > 25)
{

maximum = total * 2;
System.out.println(
"The maximum is " +
maximum);

}

37

Flow of Control
 A loop, such as a while statement, also evaluates a

condition.
 It executes a block of code repeatedly.

while (count < 100)
{

System.out.println(count);
count = count + 1;

}

While Statement

A while statement is used execute a set of program statements
multiple times

It is called a loop or repetition statement

Like an if statement, it evaluates a boolean condition and only
executes the body of the loop if the condition is true

But unlike an if, it then evaluates the condition again – if it's still
true, the body is executed again

The body of the while loop is executed repeatedly until the
condition becomes false

38

While Statement

39

int num = 1;

while (num <= 5)
{

System.out.println(num);
num++;

}

System.out.println("Now here.");

1
2
3
4
5
Now here.

While Statement

40

Algorithm to Print Numbers from 7 to 100

41

Write an algorithm in pseudocode that prints the integers from
7 to 100.

Initialize num to 7

While num is less than or equal to 100
print num

increment num
int num = 7;

while (num <= 100)
{

System.out.println(num);
num++;

}

The Code

While Statement

An infinite loop is a loop that doesn't terminate normally –
the condition doesn't ever become false

42

int num = 1;
while (num <= 10)
{

System.out.println(num);
}

To terminate the program, press Control-C or Control-Break

Carefully check the logic involved to avoid them

While Statement

Here's an example that uses a while loop for input validation

43

double num = 0.0;

while (num <= 100)
{

System.out.print("Enter a number > 100: ");
num = in.nextDouble();

}
System.out.println("Moving on...");

Enter a number > 100: 101
Moving on...

If the user enters a valid number right away, the loop body only
executes once

While Statement

The loop "traps" the user until a valid value is entered

44

Enter a number > 100: 70
Enter a number > 100: 35
Enter a number > 100: 99.99
Enter a number > 100: 500
Moving on...

Sometimes you can tell how many times a loop will execute
by looking at the code, and sometimes you can't

Example: Accumulating Interest

Walk-thru the Rephactor topic Example: Accumulating
Interest

45

46

DATA REPRESENTATION

CSC 1051

47

Why do Computers use Binary Numbers
 Humans have 10 fingers, so they use decimal numbers

 Computers only have 2 fingers to count with in the form
of electronic switches that are either on or off.

 Computers use binary numbers

 One byte contains 8 bits

48

What's a Byte?

48

 We know that one bit is a binary digit

 One byte contains 8 bits

Storing Data in the Computer

Computers store all information digitally, using binary numbers:
• numbers & text
• images, audio & video
• program instructions
• objects

49

Primitive Data Types

In Java, fundamental data is represented by one of the eight
primitive data types

50

Everything else is represented as an object

Primitive Data Types

Six of the eight are numeric types: 4 integer and 2 floating-point

They differ by how much memory space they use to store a value,
which determines the possible range of values

51

Type Size Minimum Maximum

byte 1 byte -128 127

short 2 bytes -32,768 32,767

int 4 bytes -2,147,483,648 2,147,483,647

long 8 bytes -9,223,372,036,854,775,808 9,223,372,036,854,775,807

float 4 bytes -3.4 x 1038 (7 sig. digits) 3.4 x 1038 (7 sig. digits)

double 8 bytes -1.7 x 10308 (15 sig. digits) 1.7 x 10308 (15 sig. digits)

Primitive Data Types

You cannot use the comma grouping character in a program

52

int count = 150,765;

However, you can format your output to include a grouping
character

You can also format output to print floating-point values to
a certain precision

Primitive Data Types

The char data type represents a single character

Character literals are surrounded by single quotes

53

The character 'X' is different than the character string "X"

The character '7' is different than the number 7

The character 'a' is different than the character 'A'

char terminator = ';';
char middleInitial = 'R';
char topGrade = 'A';

Primitive Data Types

A character set is simply a list of characters

Java characters are represented by the Unicode character set

Unicode includes thousands of characters and symbols used in
languages all over the world

The characters in a character set are in a particular order and
each has its own numeric value

A char variable stores the numeric value of the character
represented

54

Primitive Data Types

The boolean type is named after George Boole, an English
mathematician and logician

It has only two possible values: true and false

A boolean variable can be used to represent a condition

55

boolean flag = true;
boolean targetFound = false;
boolean tooHigh, trialMode, gameOver;

Many Java operators return boolean results, which are often
used as the conditions of if statements and loops

The Unicode Character Set

A character set is a list of characters used by a language

The way those characters are represented in memory is called a
character encoding

The ASCII character set is still in use, but has limitations

ASCII – American Standard Code for Information Interchange

It was originally a 7-bit code, allowing only 128 characters to be
represented

English letters, digits, punctuation

An extended 8-bit version allowed for accented characters and
other symbols, but was still inadequate

56

The Unicode Character Set

The goal of the Unicode character set is to represent all the
characters used in written languages across the world

Including Asian ideographs and symbols from special domains

It was originally specified as a straightforward 16-bit encoding,
which allowed for 65,536 characters

But even that wasn't enough

Later, the encoding scheme was extended to include
supplementary characters

57

The Unicode Character Set

Java supports the Unicode character set

A char variable stores the numeric code that represents a 16-bit
Unicode character

By design, ASCII is a subset of Unicode – the first 128 characters
of Unicode are the ASCII characters

Upper case and lower case letters are in order and contiguous

This allows characters and strings to be put in lexicographic order,
which is not quite alphabetical ordering

"Zoo" comes before "able" because upper case 'Z' comes before
lower case 'a'

58

ASCII part of The Unicode Character Set

59

Characters in Java

Characters, including spaces, digits, and punctuation are
represented by numeric values.

60

Villanova

86 105 108 108 97 110 111 118 97

01100001

00000000 01100001

ACSII

UNICODE

ASCII uses eight bits per
character, allowing for
256 unique characters

Unicode extends ASCII to sixteen
bits per character, allowing for
65,536 unique characters.

Decimal Value

Characters in Java

A char variable stores a single character

Character literals are delimited by single quotes:

'a' 'X' '7' '$' ',' '\n'

A String literal can hold multiple characters.

61

char grade = 'A';
char terminator = ';', separator = ' ', newline = '\n';

String oneLetter = "A"; // this is a string not char

Break and Continue Statements

The break statement and the
continue statement affect the
flow of execution in a loop.

The break statement is also
used to break out of a switch
statement.

62

The break statement is also
used to break out of a switch
statement.

Break Statement

63

int num = 0;
while (num < 10)
{

num++;
System.out.println(num);

if (num == 5)
break;

}
System.out.println("Now here.");

1
2
3
4
5
Now here.

As soon as the value of num equals 5, the break statement is
executed… and the loop is immediately exited.

Next, the println statement after the loop is executed.

Continue Statement

64

int num = 0;
while (num < 6)
{

num++;

if (num == 3)
continue;

System.out.println(num);
}
System.out.println("Now here.");

1
2
4
5
6
Now here.

When the value of num equals 3, the continue statement is
executed… the rest of the current iteration of the loop is
skipped…. so 3 is not printed.

Finally, the println statement after the loop is executed.

	CSC 1051 Algorithms & Data Structures I
	Conditionals & Control Flow
	If Statement
	If Statement
	If Statement
	If Statement
	If Statement
	If Statement
	If Statement
	If Statement
	If Statement
	If Statement
	If Statement
	Example: Paycheck Calculator
	A Practical Use of an If Statement
	Why do we need Boolean Expressions?
	Boolean Expression to the Rescue!
	Boolean Expressions
	Boolean Expressions
	Evaluate these Boolean expressions
	Boolean Expressions
	Boolean Expressions
	Boolean Expressions
	Boolean Expressions
	Boolean Expressions
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Operators
	Boolean Operators
	repetition
	Flow of Control
	Flow of Control
	Flow of Control
	Flow of Control
	While Statement
	While Statement
	While Statement
	Algorithm to Print Numbers from 7 to 100
	While Statement
	While Statement
	While Statement
	Example: Accumulating Interest
	Data Representation
	Why do Computers use Binary Numbers
	What's a Byte?
	Storing Data in the Computer
	Primitive Data Types
	Primitive Data Types
	Primitive Data Types
	Primitive Data Types
	Primitive Data Types
	Primitive Data Types
	The Unicode Character Set
	The Unicode Character Set
	The Unicode Character Set
	ASCII part of The Unicode Character Set
	Characters in Java
	Characters in Java
	Break and Continue Statements
	Break Statement
	Continue Statement

