
CSC 1051 Algorithms & Data
Structures I

Data, Variables &
Expressions

2

DATA & VARIABLES

CSC 1051

What is an Algorithm?

An algorithm is a step-by-step procedure for solving a problem.

It's a set of instructions designed to perform a specific task.

3

How an algorithm works:

• You're in some initial state (the input)

• Do something with it (the algorithm)

• The result comes out (the output)

Everyday Algorithms

Some everyday things that are algorithms:

• Baking a cake

• Reading a book

• Planning a party

• A puppy fetching a ball

• Finding something to watch on Netflix

• Driving from home by the shortest route

• Making a peanut butter and jelly sandwich
Try writing down the algorithm steps yourself!

4

Try It: Simple Calculator Algorithm

Design the algorithm for a two number addition calculator.
Draw a flowchart inspired by the generic algorithm flowchart:

5

2nd

Number

SumPerform
Addition

1st

Number

How does the computer
remember these numbers?

Variables

A variable is a name used to refer to data stored in memory

6

5

A Java variable must be declared before it can be used

A variable declaration establishes the variable's data type and
may initialize the value

count

int count;
int index = 1;
int quantity, minimum = 0, result = -1;

The data type of these variables is int, which means they each
store an integer value

Variables

A variable name, like any other name you make up in a program,
is an identifier

Identifier names can be composed of letters, digits, the
underscore character (_) and the dollar sign ($)

An identifier cannot begin with a digit

Variable names should be written in so-called camelCase
currentScore

finalLetterGrade

7

Variables

There are eight Java primitive data types

4 integer types: byte, short, int, long
2 floating-point types: float, double
1 character type: char
1 boolean type: boolean

The numeric types differ by how much memory they use, which
dictates the range of values they can store

8

int count = 5;
double price = 2.99;
char initial = 'K';
boolean flag = true;

Assignment Statements

An assignment statement stores a value in a variable using the
assignment operator (=)

The right-hand side of the assignment operator can be a simple
value or an expression

9

sum = 0;
capacity = 100;
area = length * width;
max = measuredValue + delta;

A variable can appear on both sides of the assignment operator

count = count + 1;
capacity = capacity * 2;

Assignment Statements

The result of the expression must be type compatible with the
variable to which it's assigned

For example, you can't assign a boolean value to an integer, or
vice versa

Numeric values can be assigned if there is no risk of losing
information

10

short shortVal = 1000;
int num = shortVal;
double amount = i;

Assignment Statements

Converting to a larger type is called a widening conversion – going
the other way is a narrowing conversion

To perform a narrowing conversion, you have to use type casting

A cast is expressed as a type within parentheses, placed in front
of the value to be converted

11

double amount = 138.756;
int num = (int)amount;

A cast explicitly causes a value of one type to be treated like
another, even if data is lost

That assignment stores the value 138 in the variable num, but
the value in amount remains the same

Assignment Statements

Casting is powerful and should be used with care

But it's very helpful at times

If two integers are divided, the result is an integer (the fractional
part is discarded)

If you want the fractional part, you can cast one of the operands
as a double

12

average = (double)sum / count;

The cast causes the value of sum to be treated as a double for
the purposes of the expression

Constants

A constant is similar to a variable, except that its value cannot
be changed

13

final int PINTS_PER_GALLON = 8;

Once it has been given a value, the compiler will complain if
later code attempts to change it:

PINTS_PER_GALLON = 12;

By convention, constant names are in all UPPERCASE LETTERS
with words separated by underscores, so they are OBVIOUS.

Constants

Three reasons to use constants:

1. Constants convey more meaning that literals

MAX_OCCUPANCY vs. 650

2. They prevent inadvertent programming errors

A change to the value must be explicit

3. They make maintenance tasks easier

If the value does change, it only needs to be changed in
one place

14

Strings

A character string is a group of ordered characters

Character strings are objects in Java, defined by the String class

So a String variable is a reference to an object

15

The String class is part of the java.lang package, so does not
need to be imported

Strings

Strings can be created with the new operator, but a double-
quoted string literal is already an object

16

The plus operator (+) is used to perform string concatenation

String name = new String("James Gosling");
String title = "Rephactor Java";

System.out.println("Without " + name +
", there would be no " + title + ".");

Without James Gosling, there would be no Rephactor Java.

Strings

Strings are managed so that you can refer to individual
characters by a numeric index, which starts at 0

17

The String class has many methods to help manage strings

For example, the length method returns the number of
characters in the string (14 in this case)

The charAt method returns the character at a particular index

int num = title.length();
char letter = title.charAt(10);

Strings

The substring method returns a new String that contains a
subset of characters copied from another string

There are two versions: one that takes one index as an
argument and one that takes two

str.substring(5)

str.substring(7, 12)

If one index is specified, the substring runs from that index to
the end of the string

If two indexes are specified, the substring runs from the first
index up to but not including the second index

18

Strings

19

String goBig = "Go big or go home";
String sub1 = goBig.substring(10);
String sub2 = goBig.substring(3, 12);

System.out.println("Original string: " + goBig);
System.out.println("substring(10): " + sub1);
System.out.println("substring(3, 12): " + sub2);

The print and println Methods

The System.out object prints output to the console window

The println method moves to the next line after it prints its
output

The print method does not

20

System.out.println("One");
System.out.print("Two");
System.out.println("Three");

One
TwoThree

The print and println Methods

21

System.out.print("One, ");
System.out.print("Two, ");
System.out.println("Buckle my shoe.");
System.out.println();
System.out.print("Three, ");
System.out.print("Four, ");
System.out.println("Close the door.");

One, Two, Buckle my shoe.

Three, Four, Close the door.

No argument
required

Result: blank
line

The print and println Methods

The print and println methods can print any type of data

22

System.out.println(25);

69

This is an example of method overloading – a method
accepting different types of data

Expressions in the arguments are evaluated and the results
are sent to the method

System.out.println(38 + 31);

The print and println Methods

Character strings cannot be broken across lines:

23

System.out.println("No word in the English language
rhymes with the words month or orange");

The plus sign can be used to perform string concatenation

System.out.println("No word in the English language " +
"rhymes with the words month or orange");

The two strings are joined into one long string which is passed
to the method

The print and println Methods

The plus sign is an overloaded operator – it operates on different
types of data

It determines which operation to perform based on the types of
its operands

The plus operator is evaluated left to right

24

Concatenated: 123456

System.out.println("Concatenated: " + 123 + 456);

Added: 579

System.out.println("Added: " + (123 + 456));

Escape Sequences

An escape sequence is a technique for representing a character

It's used when the traditional representation is problematic or
less convenient

For example, suppose you wanted to print double quotes as part
of your output

25

"Tell the truth and then run."

System.out.println(""Tell the truth and then run."");

You can't just include them in the string – that will confuse
the compiler

Escape Sequences

An escape sequence begins with a backslash (\), which tells the
compiler to treat what follows in a special way

To represent a double quote, use the \" escape sequence

26

An escape sequence can be used wherever needed

System.out.println("\"Tell the truth and then run.\"");

"Tell the truth and then run."

System.out.println("She said \"Hi\" to me.");

She said "Hi" to me.

Escape Sequences

It's often convenient to include a newline character in a string,
which is represented with the \n escape sequence

It causes output to move to the next line

27

System.out.println("One\nTwo\nThree");

One
Two
Three

System.out.println("Batman\n\nRobin");

Batman

Robin

Escape Sequences

Summarizing the Java escape sequences:

28

Escape Sequence What it Represents

\" double quote

\' single quote

\\ backslash

\t horizontal tab

\n newline

\b backspace

\r carriage return

\f form feed

\uXXXX a Unicode character

ARITHMETIC EXPRESSIONS

Numeric Expressions

An expression is a combination of one or more operators and
operands that typically perform a calculation.

The operands used in the operations might be literals, constants,
variables, or other sources of data.

30

numeric literals and
arithmetic operators

int result = 14 + 8 / 2;

Numeric Expressions

Basic Java arithmetic operators

31

Operands and operators combine to form potentially
complex expressions

Operator Name Example Result

+ Addition 25 + 17 42

– Subtraction 18.92 – 12 6.92

* Multiplication 5 * 7.3 36.5

/ Division 7.65 / 3.4 2.25

% Remainder 15 % 6 3

Numeric Expressions

If either or both of operands to the division operator (/) are
floating-point values, the result is a floating-point value

But it performs integer division if both operands are integers

The result is an integer and any fractional part is discarded

5.0 / 2.0 2.5

5 / 2 2

The remainder operator (%) computes the remainder left over
after dividing one operand into another

25 % 8 1

25 % 10 5

32

Numeric Expressions

Integer division and remainder

33

a b a / b a % b

10 5 2 0

7 4 1 3

4 7 0 4

-5 2 -2 -1

5 -2 -2 1

-5 -2 2 -1

5346 7 763 5

The result of the remainder operator takes the sign of
the dividend (the first operand)

Numeric Expressions

One number is evenly divisible by another if the remainder is 0

34

if (total % 5 == 0)
System.out.println("evenly divisible by 5");

So, to determine if a number is even or odd:

if (num % 2 == 0)
System.out.println(num + " is even");

else
System.out.println(num + " is odd");

Numeric Expressions

Integer division and remainder often work well together

35

int seconds = 2172;

int mins = seconds / 60;
int secs = seconds % 60;

System.out.println(seconds + " seconds is " + mins
+ " minutes and " + secs + " seconds.");

2172 seconds is 36 minutes and 12 seconds.

Increment and Decrement Operators

Incrementing the value of a variable is normally done like this:

36

count = count + 1;

With the increment operator, this does exactly the same thing:

count++;

The decrement operator subtracts 1 from the variable:

count--;

Increment and Decrement Operators

Increment and decrement operators have two forms:

37

total = count++;

The postfix form uses the value before it increments it. If count
is 15, after the assignment total is 15 and count is now 16.

total = ++count;

The prefix form increments the value first and then uses it. If
count is 15, after the assignment total is 16 as is count.

Always be careful when using increment and decrement
operators. They can be very concise and very tricky.

Operator Precedence

The order in which operations are performed relies on their
precedence.

38

In grade school, you may have learned the PEMDAS mnemonic
for remembering order of operations. This approach is the
inspiration for how programming languages handle order of
operations… but it's a little more complicated.

This is the first row from the Java precedence table. In addition
to parentheses (the P in PEMDAS), also at this top level are of
few other operators.

In addition to precedence, the table shows associativity. That's
how you know whether operators with the same precedence are
evaluated from left-to-right or right-to-left.

Precedence and Associativity

39

Operator Precedence - Example

In what order are the operators evaluated in the following
expressions?

40

a + b + c + d + e a + b * c - d / e

a / (b + c) - d % e

a / (b * (c + (d - e)))

1 432 3 241
1 2

3

4

2 341

4 123

Assignment Operator Precedence

The assignment operator has a lower precedence than the
arithmetic operators

41

First the expression on the right hand
side of the = operator is evaluated

Then expression result is stored in the
variable on the left-hand side

answer = sum / 4 + MAX * lowest;

14 3 2

Shortcut Assignment Operators

It’s common to update a variable’s value using its current value:

42

balance = balance + deposit;

Java provides a shortcut operator that combines the calculation
and the assignment:

balance += deposit;

Those two statements are functionally equivalent – they
accomplish the same thing

Shortcut Assignment Operators

Operator Example Equivalent To

+= total += 6.98; total = total + 6.98;

-= gap -= step; gap = gap - step

*= capacity *= 2; capacity = capacity * 2;

/= max /= factor; max = max / factor;

%= index %= length; index = index % length;

43

There are shortcut operators corresponding to each arithmetic
operator:

The left hand variable is always on the left-hand side of the
operator in the expanded expression

Shortcut Assignment Operators

The right-hand side doesn’t have to be a single value – it could
be a more complex expression:

44

x = x * (y + z / 2);

The entire right-hand expression is evaluated, then the shortcut
operator is applied

So that statement is equivalent to this:

x *= y + z / 2;

INTERACTIVE PROGRAMMING

Interactive Programs

To be really useful, a
program should be able to
interact with a user, or it
may do the same thing
every time!

An interactive program
accepts input directly
from the user and does
something in response.

46

Reading Input

A Scanner object is used to read and parse input in a program. It
typically reads data from a keyboard or file.

The Scanner class is part of the java.util package in the Java API.
To use it, you should include this import statement:

47

import java.util.Scanner;

Then, to create the Scanner object, use the new operator:

Scanner scan = new Scanner(System.in);

Interactive Input

Here's how to use a Scanner to read in a String and an integer:

48

Scanner scan = new Scanner(System.in);

System.out.print("Who are you? ");
String name = scan.nextLine();

System.out.print("How many fingers do you see? ");
int count = scan.nextInt();

System.out.println();
System.out.println("You say you are " + name);
System.out.println("I held up " + count + " fingers.");

Explore the Scanner Class Rephactor topic to discover the
many ways to use this powerful and versatile feature of Java.

	CSC 1051 Algorithms & Data Structures I
	Data & Variables
	What is an Algorithm?
	Everyday Algorithms
	Try It: Simple Calculator Algorithm
	Variables
	Variables
	Variables
	Assignment Statements
	Assignment Statements
	Assignment Statements
	Assignment Statements
	Constants
	Constants
	Strings
	Strings
	Strings
	Strings
	Strings
	The print and println Methods
	The print and println Methods
	The print and println Methods
	The print and println Methods
	The print and println Methods
	Escape Sequences
	Escape Sequences
	Escape Sequences
	Escape Sequences
	Arithmetic Expressions
	Numeric Expressions
	Numeric Expressions
	Numeric Expressions
	Numeric Expressions
	Numeric Expressions
	Numeric Expressions
	Increment and Decrement Operators
	Increment and Decrement Operators
	Operator Precedence
	Precedence and Associativity
	Operator Precedence - Example
	Assignment Operator Precedence
	Shortcut Assignment Operators
	Shortcut Assignment Operators
	Shortcut Assignment Operators
	Interactive Programming
	Interactive Programs
	Reading Input
	Interactive Input

