
3/22/17

1

CSC 8301- Design and Analysis of Algorithms

Lecture 8

Transform and Conquer II
Algorithm Design Technique

Transform and Conquer

This group of techniques solves a problem by a transformation

q to a simpler/more convenient instance of the same problem
(instance simplification)

q to a different representation of the same instance (representation
change)

q to a different problem for which an algorithm is already
available (problem reduction)

3/22/17

2

Representation Change
• Search	Trees	(binary,	AVL,	2-3,	2-3-4,	B-trees)
• Heaps
• Horner’s rule for polynomial evaluation
• Computing an (binary exponentiation)

Heaps and Heapsort

Definition A heap is a binary tree with keys at its nodes (one key
per node) such that:

q It is essentially complete, i.e., all its levels are full except
possibly the last level, where only some rightmost keys may be
missing (shape property)

q The key at each node is ≥ keys at its children (heap property)

3/22/17

3

Illustration of the heap’s definition

10

5

4 2

7

1

10

5

2

7

1

10

5

6 2

7

1

Note: Heap’s elements are ordered top down (along any path
down from its root), but they are not ordered left to right

Which of the following is a heap?

Some Important Properties of a Heap

q The root contains the largest key

q The subtree rooted at any node of a heap is also a heap

q A heap can be represented as an array
– most important property that distinguishes it from other binary search trees;

facilitated by the left-to-right fill at each level

3/22/17

4

Heap’s Array Representation

Store heap’s elements in an array (whose elements indexed, for
convenience, 1 to n) in top-down left-to-right order

Example:

q Left child of node at index j is at index _______
q Right child of node at index j is at index _______
q Parent of node at index j is at index _______
q Parental nodes are represented in the first ën/2û locations

9

1

5 3

4 2

1 2 3 4 5 6

9 5 3 1 4 2

Step 0: Initialize the structure with keys in the order given

Step 1: (Heapify) Starting with the last (rightmost) parental node, fix
the heap rooted at it, if it doesn’t satisfy the heap condition:
keep exchanging it with its largest child until the heap
condition holds

Step 2: Repeat Step 1 for the preceding parental node

Heap Construction (bottom-up)

3/22/17

5

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

Construct a heap for the list 2, 9, 7, 6, 5, 8

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

Example of Heap Construction (bottom-up)

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

q Algorithm on heaps are easier to understand if we think of heaps as binary trees
q But their actual implementation is much simpler and more efficient with arrays

Bottom-up Heap Construction Algorithm

Construct a heap for the list
1 2 3 4 5 6

2 9 7 6 5 8

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>
7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

...

H

3/22/17

6

Pseudocode of Bottom-up Heap Construction

Efficiency of Bottom-up Heap Constr. Algorithm

q Assume n=2k-1, so the heap is full
q Height is h = _________________
q A key on level i (top level is 0) may need to

travel to level _________ in the worst case
q Maximum number of levels traversed by key

on level i is ________________

q Total number of key comparisons is C(n) =

q Moving a key to the next level down requires _____ comparisons
q Maximum number of comparisons for key on level i is _________
q Number of keys on level i is _____________

3/22/17

7

Stage 1: Construct a heap for a given list of n keys

Stage 2: Repeat operation of root removal n-1 times:
• Exchange keys in the root and in the last (rightmost) leaf
• Decrease heap size by 1
• “Heapify” the tree: if necessary, swap new root with

larger child until the heap condition holds

Heapsort

Sort the list 2, 9, 7, 6, 5, 8 by heapsort

Stage 1 (heap construction)
2 9 7 6 5 8

Example of Sorting by Heapsort

1 2 3 4 5 6

2 9 7 6 5 8

3/22/17

8

Sort the list 2, 9, 7, 6, 5, 8

Stage 1 (heap construction) Stage 2 (root/max removal)
2 9 7 6 5 8 9 6 8 2 5 7
2 9 8 6 5 7
2 9 8 6 5 7
9 2 8 6 5 7
9 6 8 2 5 7

Example of Sorting by Heapsort

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

1 2 3 4 5 6

9 6 8 2 5 7

Stage 1: Build heap for a given list of n keys
Worst-case:

C(n) =

Stage 2: Repeat operation of root removal n-1 times (fix heap)
Worst-case:

C(n) =

Analysis of Heapsort

3/22/17

9

Stage 1: Build heap for a given list of n keys
Worst-case:

C(n) =

Stage 2: Repeat operation of root removal n-1 times (fix heap)
Worst-case:

C(n) =

Both worst-case and average-case efficiency: Q(n log n)
In-place: yes
Stability: no (e.g., 1 1)

S 2(h-i) 2i = 2 (n – log2(n + 1)) Î Q(n)
i=0

h-1

nodes at
level i

S
i=1

n-1
2log2 i Î Q(n log n)

Analysis of Heapsort

Review of Major Sorting Algorithms

Selection
sort

Insertion
sort

Mergesort Quicksort Heapsort

strategy

worst time

avg. time

in-place

stability

3/22/17

10

A priority queue is the ADT of a set of elements with
numerical priorities with the following operations:

– find element with highest priority
– delete element with highest priority
– insert element with assigned priority (see next slide)

q Heap is a very efficient way for implementing priority queues

q Two ways to handle priority queue in which
highest priority = smallest number

Priority Queue

Insertion of a New Element into a Heap

q Insert the new element at last position in heap.
q Compare it with its parent and, if it violates heap condition,

exchange them
q Continue comparing the new element with nodes up the tree until

the heap condition is satisfied

Example: Insert key 10

Efficiency: O(log n)

9

6

2 5

8

7 10

9

6

2 5

10

7 8

> >

10

6

2 5

9

7 8

3/22/17

11

Representation Change
• Search	Trees	(binary,	AVL,	2-3,	2-3-4,	B-trees)
• Heaps
• Horner’s rule for polynomial evaluation
• Computing an (binary exponentiation)

Horner’s Rule For Polynomial Evaluation

Given a polynomial of degree n
p(x) = anxn + an-1xn-1 + … + a1x + a0

and a specific value of x, find the value of p at that point.

Two brute-force algorithms:
p ¬ 0 p ¬ a0; power ¬ 1
for i ¬ n downto 0 do for i ¬ 1 to n do

power ¬ 1 power ¬ power * x
for j ¬ 1 to i do p ¬ p + ai * power

power ¬ power * x return p
p ¬ p + ai * power

return p

3/22/17

12

Horner’s Rule

Example: p(x) = 2x4 - x3 + 3x2 + x - 5

Horner’s Rule

Example: p(x) = 2x4 - x3 + 3x2 + x - 5 =
= x(2x3 - x2 + 3x + 1) - 5 =
= x(x(2x2 - x + 3) + 1) - 5 =
= x(x(x(2x - 1) + 3) + 1) - 5

Substitution into the last formula leads to a faster algorithm

Same sequence of computations are obtained by simply
arranging the coefficients in a table and proceeding as follows:

coefficients 2 -1 3 1 -5
x=3

3/22/17

13

Horner’s Rule Pseudocode

Efficiency of Horner’s Rule: # multiplications = # additions = n

Byproduct – synthetic division of p(x) by (x-x0):
q Intermediate values are coefficients of the quotient of p(x):(x-x0)

Computing an (revisited)

Left-to-right binary exponentiation

Initialize product accumulator by 1.
Scan n’s binary expansion from left to right and do the following:
q If the current binary digit is 0, square the accumulator (S)
q If it is 1, square the accumulator and multiply it by a (SM)

Example: Compute a13. Here, n = 13 = 11012.
Binary rep. of 13: 1 1 0 1

Accumulator: 1 ______ ______ _______ _________
(computed left-to-right)

Efficiency: min M(n) ________________
max M(n) ________________

3/22/17

14

Computing an (cont.)

Right-to-left binary exponentiation

Scan n’s binary expansion from right to left and compute an as the
product of terms a2i corresponding to 1’s in this expansion.

Example Compute a13 by the right-to-left binary exponentiation.
Here, n = 13 = 11012.

1 1 0 1
a8 a4 a2 a : a2i terms
a8 * a4 * a : product

(computed right-to-left)

Pseudocode for computing an (right to left)
Example for n = 13 = 11012:

1 1 0 1
a8 * a4 * a : product

Pseudocode:

Efficiency: same as that of left-to-right binary exponentiation

3/22/17

15

Transform and Conquer
Problem Reduction

Problem Reduction

This variation of transform-and-conquer solves a problem by
transforming it into different problem for which an algorithm is
already available.

To be of practical value, the combined time of the transformation and
solving the other problem should be smaller than solving the
problem as given by another method.

3/22/17

16

Examples of Solving Problems by Reduction

q Computing lcm(m, n) via computing gcd(m, n)

q Counting number of paths of length n in a graph by raising the
graph’s adjacency matrix to the n-th power

q Transforming a maximization problem to a minimization problem
and vice versa (also, min-heap construction)

q Linear programming

q Reduction to graph problems (e.g., solving puzzles via state-space
graphs)

Homework

Exercises 6.4: 1, 3, 6, 7, 8
Exercises 6.5: 4, 7, 9
Exercises 6.6: 2, 9

Reading:
q Sec. 6.4, 6.5, and 6.6

