CSC 8301- Design and Analysis of Algorithms

Lecture 7

Transform and Conquer I Algorithm Design Technique

Transform and Conquer

This group of techniques solves a problem by a transformation to

- □ a simpler/more convenient instance of the *same* problem (*instance simplification*)
- □ a different representation of the *same* instance (*representation change*)
- a *different* problem for which an algorithm is already available (*problem reduction*)

Transform and Conquer

- Instance simplification
 - Presorting
 - Gaussian Elimination
- *Representation change*
 - Binary Search Trees
 - Heaps
 - Horner's rule for polynomial evaluation
- □ Problem reduction
 - Example: compute lcm(a,b) by computing gcd(a,b)

Instance simplification - Presorting

Presorting

• sorting ahead of time, to make repetitive solutions faster

Many problems involving lists are easier when list is sorted, e.g.,

- □ searching
- computing the median (selection problem)
- checking if all elements are distinct (element uniqueness)

Also:

- □ Topological sorting helps solving some problems for dags
- Presorting is used in many geometric algorithms

How fast can we sort ?

Efficiency of algorithms involving presorting depends on efficiency of the sorting algorithm used

- <u>Theorem</u> (see Sec. 11.2): $\lceil \log_2 n ! \rceil \approx n \log_2 n$ comparisons are necessary in the worst case to sort a list of size *n* by <u>any</u> comparison-based algorithm
- Note: About $n\log_2 n$ comparisons are also sufficient to sort array of size n (by mergesort)

Searching with presorting

Problem: Search for a given K in A[0..n-1]

Presorting-based algorithm: Stage 1 Sort the array by, say, mergesort Stage 2 Apply binary search

Efficiency: $\Theta(n \log n) + O(\log n) = \Theta(n \log n)$

Good or bad?

Why do we have our dictionaries, telephone directories, etc. sorted?

Instance Simplification – Element Uniqueness

• Presorting-based algorithm

Stage 1: sort by efficient sorting algorithm (e.g. mergesort) Stage 2: scan array to check pairs of <u>adjacent</u> elements

Efficiency: $\Theta(n \log n) + O(n) = \Theta(n \log n)$

- □ Brute force algorithm
 - Compare all pairs of elements
 - Efficiency: $O(n^2)$

Instance simplification – Gaussian Elimination

You are familiar with systems of two linear equations: $a_{11}x_1 + a_{12}x_2 = b_1$ $a_{21}x_1 + a_{22}x_2 = b_2$ Unless $a_{11}/a_{21} = a_{12}/a_{22}$, the system has a unique solution

Instance simplification – Gaussian Elimination

You are familiar with systems of two linear equations:

 $a_{11}x_1 + a_{12}x_2 = b_1$ $a_{21}x_1 + a_{22}x_2 = b_2$

Unless $a_{11}/a_{21} = a_{12}/a_{22}$, the system has a unique solution:

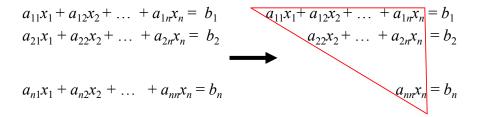
- Multiply the first equation by $-a_{21}/a_{11}$ $-a_{21}x_1 - (a_{21}a_{12}/a_{11})x_2 = -a_{21}b_1/a_{11}$
- □ Add the above equation to the 2nd one in the system $(a_{22}-a_{21}a_{12}/a_{11})x_2 = b_2-a_{21}b_1/a_{11}$
- Extract x_2 from this equation, substitute in the 1st

Instance simplification – Gaussian Elimination

Given: A system of *n* linear equations in *n* unknowns with an arbitrary coefficient matrix.

Transform to: An equivalent system of n linear equations in n unknowns with an upper triangular coefficient matrix.

Solve the latter by substitutions starting with the last equation and moving up to the first one.



Gaussian Elimination (cont.)

The transformation is accomplished by a sequence of elementary operations on the system's coefficient matrix (which don't change the system's solution):

for $i \leftarrow 1$ to n-1 do

replace each of the subsequent rows (i.e., rows i+1, ..., n) by a difference between that row and an appropriate multiple of the *i*-th row to make the new coefficient in the *i*-th column of that row 0

Example of Gaussian Elimination

Solve $2x_1 - 4x_2 + x_3 = 6$ $3x_1 - x_2 + x_3 = 11$ $x_1 + x_2 - x_3 = -3$

Example of Gaussian Elimination

2 -4 1 6
0 5 -1/2 2 Repeat
0 <u>3 -3/2 -6</u> row3–(3/5)*row2
2 -4 1 6 0 5 -1/2 2 0 0 -6/5 -36/5 $x_3 = (-36/5) / (-6/5) = 6$
$x_2 = (2+(1/2)*6) / 5 = 1$ $x_1 = (6-6+4*1)/2 = 2$

Pseudocode & Efficiency of Gaussian Elimination

Stage 1: Reduction to the upper-triangular matrix for $i \leftarrow 1$ to n-1 do for $j \leftarrow i+1$ to n do $temp \leftarrow A[j, i] / A[i, i]$ (A[i,i] must be non-zero!) for $k \leftarrow i$ to n+1 do $A[j, k] \leftarrow A[j, k] - A[i, k] * temp$

Pseudocode & Efficiency of Gaussian Elimination

Stage 2: Backward substitution for $j \leftarrow n$ downto 1 do $t \leftarrow 0$ for $k \leftarrow j + 1$ to n do $t \leftarrow t + A[j, k] * x[k]$ $x[j] \leftarrow (A[j, n+1] - t) / A[j, j]$

Efficiency: $\Theta(n^3) + \Theta(n^2) = \Theta(n^3)$

Transform and Conquer Representation Change

Searching Problem

<u>Problem</u>: Given a (multi)set S of keys and a search key K, find an occurrence of K in S, if any

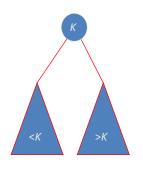
- □ There is no single algorithm that fits all situations best
- Searching must be considered in the context of:
 - file size (internal or external)
 - dynamics of data (static vs. dynamic)
- Dictionary operations (dynamic data):
 - find (search)
 - insert
 - delete

Taxonomy of Searching Algorithms

- □ List searching
 - sequential search
 - binary search
- □ Tree searching
 - binary search tree
 - binary balanced trees: AVL trees, red-black trees
 - multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees
- □ Hashing
 - open hashing (separate chaining)
 - closed hashing (open addressing)

Binary Search Tree

Arrange keys in a binary tree with the binary search tree property:



Examples:	5, 3, 1, 10, 12, 7, 9	1, 2, 3, 4, 5, 6, 7

Bonus: inorder traversal produces sorted list

Dictionary Operations on Binary Search Trees

- □ Searching straightforward
- □ Insertion search for key, insert at leaf where search terminated
- **Deletion** -3 cases:

deleting key at a leaf deleting key at node with single child deleting key at node with two children

- □ Efficiency depends of the tree's height: $\lfloor \log_2 n \rfloor \leq h \leq n-1$, with height average (random files) be about $3\log_2 n$
- □ Thus all three operations have
 - worst case efficiency: $\Theta(n)$
 - average case efficiency: $\Theta(\log n)$

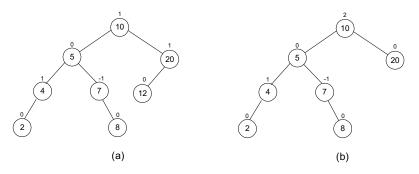
Balanced Search Trees

Attractiveness of *binary search tree* is marred by the bad (linear) worst-case efficiency. Two ideas to overcome it are:

- To rebalance binary search tree when a new insertion makes the tree "too unbalanced"
 - AVL trees
 - red-black trees
- □ To allow more than one key per node of a search tree
 - 2-3 trees
 - 2-3-4 trees
 - B-trees

Balanced trees: AVL trees

<u>Definition</u> An *AVL tree* is a binary search tree in which, for every node, the difference between the heights of its left and right subtrees, called the *balance factor*, is at most 1 (with the height of an empty tree defined as -1)



Which of these is an AVL tree?

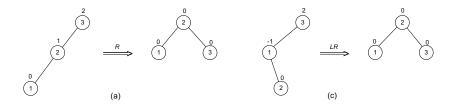
AVL Trees – Insert Operation

• Example 1: insert the keys 3, 2 and 1 in an AVL tree in this order

• Example 2: insert the keys 3, 1 and 2 in an AVL tree in this order

Rotations

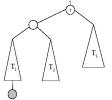
 If a key insertion violates the balance requirement at some node, the subtree rooted at that node is transformed via one of 4 *rotations*. The rotation is always performed for a subtree rooted at an "unbalanced" node closest to the new leaf.



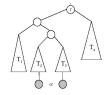
Single *R*-rotation

Double LR-rotation

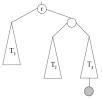
Unbalanced Cases (after insertion)



Left-Left: Left subtree of Left child R-rotation(*r*)



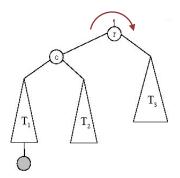
Right-Left: Right subtree of Left child LR-rotation(r)



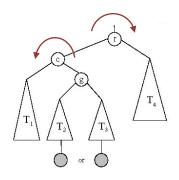
Right-Right: Right subtree of Right child **L-rotation**(*r*)

Left-Right: Left subtree of Right child **RL-rotation**(*r*)

General case: Single R-rotation



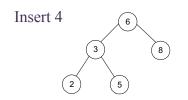
General case: Double LR-rotation



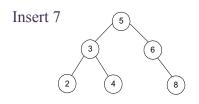
AVL tree construction - an example

Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7

AVL tree construction - an example (cont.)



AVL tree construction - an example (cont.)



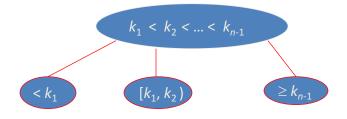
Analysis of AVL trees

- □ $h \le 1.4404 \log_2 (n+2) 1.3277$ average height: 1.01 $\log_2 n + 0.1$ for large *n* (found empirically)
- Search and insertion are $O(\log n)$
- **Deletion** is more complicated but is also $O(\log n)$
- Disadvantages:
 - frequent rotations
 - complexity
- □ A similar idea: *red-black trees* (height of subtrees is allowed to differ by up to a factor of 2)

Multiway Search Trees

<u>Definition</u> A *multiway search tree* is a search tree that allows more than one key in the same node of the tree

<u>Definition</u> A node of a search tree is called an *n*-node if it contains *n*-1 ordered keys (which divide the entire key range into *n* intervals pointed to by the node's *n* links to its children):



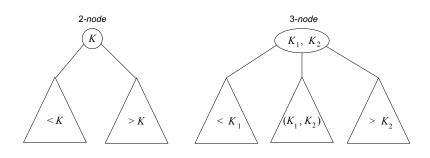
Note: Every node in a classical binary search tree is a 2-node

2-3 Tree

Definition A 2-3 tree is a search tree that

□ may have 2-nodes and 3-nodes

• height-balanced (all leaves are on the same level)



A 2-3 tree is constructed by successive insertions of keys given, with a new key always inserted into a leaf of the tree. If the leaf is a 3-node, it's split into two with the middle key promoted to the parent.

2-3 tree construction – an example

Construct a 2-3 tree for the list 9, 5, 8, 3, 2, 4, 7

Analysis of 2-3 trees

 $\Box \log_3(n+1) - 1 \le h \le \log_2(n+1) - 1$

- □ Search, insertion, and deletion are in $\Theta(\log n)$
- □ The idea of 2-3 tree can be generalized by allowing more keys per node
 - 2-3-4 trees
 - B-trees

Homework

Exercises 6.1: 1, 2, 3, 7, 9, 11a Exercises 6.2: 1, 4 Exercises 6.3: 1, 2, 3, 4, 7

Read Sections 6.1, 6.2, 6.3 and 7.4

Next: More representation change methods: Heaps, Heapsort and Horner's Rule