
3/1/17

1

CSC 8301- Design and Analysis of Algorithms

Lecture 7

Transform and Conquer I
Algorithm Design Technique

Transform and Conquer

This group of techniques solves a problem by a transformation to

q a simpler/more convenient instance of the same problem (instance
simplification)

q a different representation of the same instance (representation
change)

q a different problem for which an algorithm is already available
(problem reduction)

3/1/17

2

Transform and Conquer

q Instance simplification
– Presorting
– Gaussian Elimination

q Representation change
– Binary Search Trees
– Heaps
– Horner’s rule for polynomial evaluation

q Problem reduction
– Example: compute lcm(a,b) by computing gcd(a,b)

Instance simplification - Presorting

Presorting
q sorting ahead of time, to make repetitive solutions faster

Many problems involving lists are easier when list is sorted, e.g.,
q searching
q computing the median (selection problem)
q checking if all elements are distinct (element uniqueness)

Also:
q Topological sorting helps solving some problems for dags
q Presorting is used in many geometric algorithms

3/1/17

3

How fast can we sort ?

Efficiency of algorithms involving presorting depends on
efficiency of the sorting algorithm used

Theorem (see Sec. 11.2): élog2 n!ù » n log2 n comparisons are
necessary in the worst case to sort a list of size n by any
comparison-based algorithm

Note: About nlog2 n comparisons are also sufficient to sort array of
size n (by mergesort)

Searching with presorting

Problem: Search for a given K in A[0..n-1]

Presorting-based algorithm:
Stage 1 Sort the array by, say, mergesort
Stage 2 Apply binary search

Efficiency: Θ(nlog n) + O(log n) = Θ(nlog n)

Good or bad?
Why do we have our dictionaries, telephone directories, etc. sorted?

3/1/17

4

Instance Simplification – Element Uniqueness

q Presorting-based algorithm
Stage 1: sort by efficient sorting algorithm (e.g. mergesort)
Stage 2: scan array to check pairs of adjacent elements

Efficiency: Θ(nlog n) + O(n) = Θ(nlog n)

q Brute force algorithm
– Compare all pairs of elements
– Efficiency: O(n2)

Instance simplification – Gaussian Elimination

You are familiar with systems of two linear equations:
a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

Unless a11/a21 = a12/a22, the system has a unique solution

3/1/17

5

Instance simplification – Gaussian Elimination

You are familiar with systems of two linear equations:
a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

Unless a11/a21 = a12/a22, the system has a unique solution:

q Multiply the first equation by –a21/a11

-a21x1 – (a21a12/a11) x2 = –a21b1/a11

q Add the above equation to the 2nd one in the system
(a22-a21a12/a11)x2 = b2–a21b1/a11

q Extract x2 from this equation, substitute in the 1st

Given: A system of n linear equations in n unknowns with an
arbitrary coefficient matrix.

Transform to: An equivalent system of n linear equations in n
unknowns with an upper triangular coefficient matrix.

Solve the latter by substitutions starting with the last equation and
moving up to the first one.

a11x1 + a12x2 + … + a1nxn = b1 a11x1+ a12x2 + … + a1nxn = b1

a21x1 + a22x2 + … + a2nxn = b2 a22x2 + … + a2nxn = b2

an1x1 + an2x2 + … + annxn = bn annxn = bn

Instance simplification – Gaussian Elimination

3/1/17

6

Gaussian Elimination (cont.)

The transformation is accomplished by a sequence of elementary
operations on the system’s coefficient matrix (which don’t change
the system’s solution):

for i←1 to n-1 do
replace each of the subsequent rows (i.e., rows i+1, …, n) by
a difference between that row and an appropriate multiple
of the i-th row to make the new coefficient in the i-th column
of that row 0

Example of Gaussian Elimination

Solve 2x1 - 4x2 + x3 = 6
3x1 - x2 + x3 = 11
x1 + x2 - x3 = -3

3/1/17

7

Example of Gaussian Elimination

Solve 2x1 - 4x2 + x3 = 6
3x1 - x2 + x3 = 11
x1 + x2 - x3 = -3

Gaussian elimination
2 -4 1 6 2 -4 1 6
3 -1 1 11 row2 – (3/2)*row1 0 5 -1/2 2
1 1 -1 -3 row3 – (1/2)*row1 0 3 -3/2 -6 row3–(3/5)*row2

2 -4 1 6
0 5 -1/2 2
0 0 -6/5 -36/5

Backward substitution
x3 = (-36/5) / (-6/5) = 6
x2 = (2+(1/2)*6) / 5 = 1
x1 = (6 – 6 + 4*1)/2 = 2

Repeat

Pseudocode & Efficiency of Gaussian Elimination

Stage 1: Reduction to the upper-triangular matrix
for i← 1 to n-1 do

for j ← i+1 to n do
temp← A[j, i] / A[i, i] (A[i,i] must be non-zero!)
for k ← i to n+1 do
A[j, k] ← A[j, k] - A[i, k] * temp

3/1/17

8

Pseudocode & Efficiency of Gaussian Elimination

Stage 2: Backward substitution
for j ← n downto 1 do

t← 0
for k ← j +1 to n do

t← t + A[j, k] * x[k]
x[j] ← (A[j, n+1] - t) / A[j, j]

Efficiency: Θ(n3) + Θ(n2) = Θ(n3)

Transform and Conquer

Representation Change

3/1/17

9

Searching Problem

Problem: Given a (multi)set S of keys and a search key K,
find an occurrence of K in S, if any

q There is no single algorithm that fits all situations best
q Searching must be considered in the context of:

– file size (internal or external)
– dynamics of data (static vs. dynamic)

q Dictionary operations (dynamic data):
– find (search)
– insert
– delete

Taxonomy of Searching Algorithms

q List searching
– sequential search
– binary search

q Tree searching
– binary search tree
– binary balanced trees: AVL trees, red-black trees
– multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees

q Hashing
– open hashing (separate chaining)
– closed hashing (open addressing)

3/1/17

10

Binary Search Tree
Arrange keys in a binary tree with the binary search tree property:

K

<K >K

Examples: 5, 3, 1, 10, 12, 7, 9 1, 2, 3, 4, 5, 6, 7

Bonus: inorder traversal produces sorted list

Dictionary Operations on Binary Search Trees

q Searching – straightforward
q Insertion – search for key, insert at leaf where search terminated
q Deletion – 3 cases:

deleting key at a leaf
deleting key at node with single child
deleting key at node with two children

q Efficiency depends of the tree’s height: ëlog2 nû £ h £ n-1,
with height average (random files) be about 3log2 n

q Thus all three operations have
– worst case efficiency: Q(n)
– average case efficiency: Q(log n)

3/1/17

11

Balanced Search Trees

Attractiveness of binary search tree is marred by the bad (linear)
worst-case efficiency. Two ideas to overcome it are:

q To rebalance binary search tree when a new insertion
makes the tree “too unbalanced”
– AVL trees
– red-black trees

q To allow more than one key per node of a search tree
– 2-3 trees
– 2-3-4 trees
– B-trees

Balanced trees: AVL trees

Definition An AVL tree is a binary search tree in which, for every
node, the difference between the heights of its left and right
subtrees, called the balance factor, is at most 1 (with the height
of an empty tree defined as -1)

Which of these is an AVL tree?

5 20

124 7

2

(a)

10

1

8

10

1

0

-1

0

0

5 20

4 7

2

(b)

10

2

8

00

1

0

-1

0

3/1/17

12

AVL Trees – Insert Operation

q Example 1: insert the keys 3, 2 and 1 in an AVL tree in this order

q Example 2: insert the keys 3, 1 and 2 in an AVL tree in this order

Rotations
q If a key insertion violates the balance requirement at some node,

the subtree rooted at that node is transformed via one of 4
rotations. The rotation is always performed for a subtree rooted
at an “unbalanced” node closest to the new leaf.

3

2

2

1

1

0

2

0

1

0

3
0

>
R

(a)

Single R-rotation Double LR-rotation

3

2

1

-1

2
0

2

0

1

0

3
0

>
LR

(c)

3/1/17

13

Unbalanced Cases (after insertion)

Left-Left: Left subtree of Left child
R-rotation(r)

Right-Right: Right subtree of Right child
L-rotation(r)

Right-Left: Right subtree of Left child
LR-rotation(r)

Left-Right: Left subtree of Right child
RL-rotation(r)

General case: Single R-rotation

3/1/17

14

General case: Double LR-rotation

AVL tree construction - an example

Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7

3/1/17

15

AVL tree construction - an example (cont.)

6

2

3

-1

2

0

5

1

4
0

8

0

>
LR (6)

5

0

3

0

2

0

4

0

6

-1

8
0

Insert 4

AVL tree construction - an example (cont.)

5

-1

3

0

2

0

4

0

6

-2

8
1

7
0

>
RL (6)

5

0

3

0

2

0

4

0

7

0

8

0
6

0

Insert 7

3/1/17

16

Analysis of AVL trees

q h £ 1.4404 log2 (n + 2) - 1.3277
average height: 1.01 log2n + 0.1 for large n (found empirically)

q Search and insertion are O(log n)

q Deletion is more complicated but is also O(log n)

q Disadvantages:
– frequent rotations
– complexity

q A similar idea: red-black trees (height of subtrees is allowed to
differ by up to a factor of 2)

Multiway Search Trees
Definition A multiway search tree is a search tree that allows
more than one key in the same node of the tree

Definition A node of a search tree is called an n-node if it contains
n-1 ordered keys (which divide the entire key range into n intervals
pointed to by the node’s n links to its children):

Note: Every node in a classical binary search tree is a 2-node

k1 <		k2 <	…	<		kn-1

<	k1 [k1,	k2) ³ kn-1

3/1/17

17

2-3 Tree
Definition A 2-3 tree is a search tree that
q may have 2-nodes and 3-nodes
q height-balanced (all leaves are on the same level)

A 2-3 tree is constructed by successive insertions of keys given, with a
new key always inserted into a leaf of the tree. If the leaf is a 3-node, it’s
split into two with the middle key promoted to the parent.

K K , K1 2

(K , K)1 2

2-node 3-node

< K > K< K > K 1 2

2-3 tree construction – an example

Construct a 2-3 tree for the list 9, 5, 8, 3, 2, 4, 7

3/1/17

18

Analysis of 2-3 trees

q log3 (n + 1) - 1 £ h £ log2 (n + 1) - 1

q Search, insertion, and deletion are in Q(log n)

q The idea of 2-3 tree can be generalized by allowing more keys
per node
– 2-3-4 trees
– B-trees

Homework

Exercises 6.1: 1, 2, 3, 7, 9, 11a
Exercises 6.2: 1, 4
Exercises 6.3: 1, 2, 3, 4, 7

Read Sections 6.1, 6.2, 6.3 and 7.4

Next: More representation change methods:
Heaps, Heapsort and Horner’s Rule

