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CSC 8301- Design and Analysis of Algorithms

Lecture 7

Transform and Conquer I
Algorithm Design Technique

Transform and Conquer

This group of techniques solves a problem by a transformation  to

q a simpler/more convenient instance of the same problem (instance 
simplification) 

q a different representation of the same instance (representation 
change)

q a different problem for which an algorithm is already available 
(problem reduction) 
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Transform and Conquer

q Instance simplification
– Presorting
– Gaussian Elimination 

q Representation change
– Binary Search Trees
– Heaps
– Horner’s rule for polynomial evaluation

q Problem reduction
– Example: compute lcm(a,b) by computing gcd(a,b)

Instance simplification - Presorting

Presorting
q sorting ahead of time, to make repetitive solutions faster

Many problems involving lists are easier when list is sorted, e.g.,
q searching 
q computing the median (selection problem)
q checking if all elements are distinct (element uniqueness)

Also: 
q Topological sorting helps solving some problems for dags
q Presorting is used in many geometric algorithms
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How fast can we sort ?

Efficiency of algorithms involving presorting depends on
efficiency of the sorting algorithm used

Theorem (see Sec. 11.2):  élog2 n!ù » n log2 n  comparisons are 
necessary in the worst case to sort a list of size n by any
comparison-based algorithm

Note: About nlog2 n comparisons are also sufficient to sort array of 
size n (by mergesort)

Searching with presorting

Problem: Search for a given K in A[0..n-1]

Presorting-based algorithm:
Stage 1  Sort the array by, say, mergesort
Stage 2  Apply binary search 

Efficiency: Θ(nlog n) + O(log n) = Θ(nlog n) 

Good or bad?
Why do we have our dictionaries, telephone directories, etc. sorted?
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Instance Simplification – Element Uniqueness

q Presorting-based algorithm
Stage 1: sort by efficient sorting algorithm (e.g. mergesort)
Stage 2: scan array to check pairs of adjacent elements

Efficiency: Θ(nlog n) + O(n) = Θ(nlog n)

q Brute force algorithm 
– Compare all pairs of elements
– Efficiency: O(n2) 

Instance simplification – Gaussian Elimination

You are familiar with systems of two linear equations:
a11x1 + a12x2 = b1

a21x1 + a22x2 = b2                  

Unless a11/a21 = a12/a22, the system has a unique solution
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Instance simplification – Gaussian Elimination

You are familiar with systems of two linear equations:
a11x1 + a12x2 = b1

a21x1 + a22x2 = b2                  

Unless a11/a21 = a12/a22, the system has a unique solution:

q Multiply the first equation by –a21/a11

-a21x1 – (a21a12/a11) x2 = –a21b1/a11

q Add the above equation to the 2nd one in the system
(a22-a21a12/a11)x2 = b2–a21b1/a11

q Extract x2 from this equation, substitute in the 1st

Given: A system of n linear equations in n unknowns with an 
arbitrary coefficient matrix.

Transform to: An equivalent system of n linear equations in n 
unknowns with an upper triangular coefficient matrix.

Solve the latter by substitutions starting with the last equation  and 
moving up to the first one.

a11x1 + a12x2 + …  + a1nxn = b1               a11x1+ a12x2 + …  + a1nxn = b1

a21x1 + a22x2 + …  + a2nxn = b2                  a22x2 + …  + a2nxn = b2

an1x1 + an2x2  + …   + annxn = bn annxn = bn

Instance simplification – Gaussian Elimination
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Gaussian Elimination (cont.)

The transformation is accomplished by a sequence of elementary 
operations on the system’s coefficient matrix  (which don’t change 
the system’s solution):

for i←1 to n-1 do
replace each of the subsequent rows (i.e., rows i+1, …, n) by 
a  difference between that row and an appropriate multiple 
of the i-th row to make the new coefficient in the i-th column 
of that row 0

Example of Gaussian Elimination

Solve        2x1 - 4x2 + x3 =   6  
3x1 - x2    + x3 = 11
x1 +  x2    - x3 = -3
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Example of Gaussian Elimination

Solve        2x1 - 4x2 + x3 =   6  
3x1 - x2    + x3 = 11
x1 +  x2    - x3 = -3

Gaussian elimination
2 -4 1   6                                   2 -4 1 6 
3  -1   1  11  row2 – (3/2)*row1  0   5  -1/2   2 
1   1  -1 -3   row3 – (1/2)*row1 0   3  -3/2  -6  row3–(3/5)*row2

2 -4 1 6
0   5  -1/2    2
0   0  -6/5 -36/5

Backward substitution
x3 = (-36/5) / (-6/5) = 6
x2 = (2+(1/2)*6) / 5 = 1
x1 = (6 – 6 + 4*1)/2 = 2

Repeat

Pseudocode & Efficiency of Gaussian Elimination

Stage 1: Reduction to the upper-triangular matrix
for i← 1 to n-1 do

for j ← i+1 to n do
temp← A[j, i] / A[i, i] (A[i,i] must be non-zero!)
for k ← i to n+1 do
A[j, k] ← A[j, k] - A[i, k] * temp
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Pseudocode & Efficiency of Gaussian Elimination

Stage 2: Backward substitution
for j ← n downto 1 do

t← 0
for k ← j +1 to n do

t← t + A[j, k] * x[k] 
x[j] ← (A[j, n+1] - t) / A[j, j] 

Efficiency: Θ(n3) + Θ(n2) = Θ(n3)

Transform and Conquer

Representation Change
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Searching Problem

Problem: Given a (multi)set S of keys  and a search key K, 
find an occurrence of K in S, if any

q There is no single algorithm that fits all situations best
q Searching must be considered in the context of:

– file size (internal or external)
– dynamics of data (static vs. dynamic)

q Dictionary operations (dynamic data):
– find (search)
– insert
– delete

Taxonomy of Searching Algorithms

q List searching
– sequential search
– binary search

q Tree searching 
– binary search tree
– binary balanced trees: AVL trees, red-black trees
– multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees

q Hashing
– open hashing (separate chaining)
– closed hashing (open addressing)
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Binary Search Tree
Arrange keys in a binary tree with the binary search tree property:

K

<K >K

Examples: 5, 3, 1, 10, 12, 7, 9 1, 2, 3, 4, 5, 6, 7

Bonus: inorder traversal produces sorted list

Dictionary Operations on Binary Search Trees

q Searching – straightforward
q Insertion – search for key, insert at leaf where search terminated
q Deletion – 3 cases:

deleting key at a leaf
deleting key at node with single child
deleting key at node with two children

q Efficiency depends of the tree’s height: ëlog2 nû £ h £ n-1,
with height  average (random files) be about 3log2 n

q Thus all three operations have
– worst case efficiency: Q(n) 
– average case efficiency: Q(log n) 
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Balanced Search Trees 

Attractiveness of binary search tree is marred by the bad (linear) 
worst-case efficiency.  Two ideas to overcome it are:

q To rebalance binary search tree when a new insertion
makes the tree “too unbalanced”
– AVL trees
– red-black trees

q To allow more than one key per node of a search tree
– 2-3 trees
– 2-3-4 trees
– B-trees

Balanced trees:  AVL trees

Definition An AVL tree is a binary search tree in which, for every 
node, the difference between the heights of its left and right 
subtrees, called the balance factor, is at most 1 (with the height 
of an empty tree defined as -1)

Which of these is an AVL tree?
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AVL Trees – Insert Operation

q Example 1: insert the keys 3, 2 and 1 in an AVL tree in this order

q Example 2: insert the keys 3, 1 and 2 in an AVL tree in this order

Rotations
q If a key insertion violates the balance requirement at some node, 

the subtree rooted at that node is transformed via one of 4 
rotations. The rotation is always performed for a subtree rooted 
at an “unbalanced” node closest to the new leaf.
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Unbalanced Cases (after insertion)

Left-Left: Left subtree of Left child
R-rotation(r)

Right-Right: Right subtree of Right child
L-rotation(r)

Right-Left: Right subtree of Left child
LR-rotation(r)

Left-Right: Left subtree of Right child
RL-rotation(r)

General case: Single R-rotation
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General case: Double LR-rotation

AVL tree construction - an example

Construct an AVL tree for the list  5, 6, 8, 3, 2, 4, 7 
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AVL tree construction - an example (cont.)
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AVL tree construction - an example (cont.)

5

-1

3

0

2

0

4

0

6

-2

8
1

7
0

>
RL (6)

5

0

3

0

2

0

4

0

7

0

8

0
6

0

Insert 7



3/1/17

16

Analysis of AVL trees

q h  £ 1.4404 log2 (n + 2)  - 1.3277                                
average height: 1.01 log2n +  0.1 for large n (found empirically)

q Search and insertion are O(log n) 

q Deletion is more complicated but is also O(log n)

q Disadvantages: 
– frequent rotations
– complexity

q A similar idea: red-black trees (height of subtrees is allowed to 
differ by up to a factor of 2) 

Multiway Search Trees
Definition A multiway search tree is a search tree that allows
more than one key in the same node of the tree

Definition A node of a search tree is called an n-node if it contains 
n-1 ordered keys (which divide the entire key range into n intervals 
pointed to by the node’s n links to its children):

Note: Every node in a classical binary search tree is a 2-node

k1 <		k2 <	…	<		kn-1

<	k1 [k1,	k2 ) ³ kn-1
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2-3 Tree 
Definition A 2-3 tree is a search tree that
q may have 2-nodes and 3-nodes
q height-balanced (all leaves are on the same level)

A 2-3 tree is constructed by successive insertions of keys given, with a 
new key always inserted into a leaf of the tree.  If the leaf is a 3-node, it’s 
split into two with the middle key promoted to the parent. 

K K  ,  K1 2

(K  , K  )1 2

2-node 3-node

<  K >  K< K > K 1 2

2-3 tree construction – an example

Construct a 2-3 tree for the list  9, 5, 8, 3, 2, 4, 7
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Analysis of 2-3 trees

q log3 (n + 1) - 1 £ h £ log2 (n + 1) - 1

q Search, insertion, and deletion are in Q(log n) 

q The idea of 2-3 tree can be generalized by allowing more keys 
per node 
– 2-3-4 trees 
– B-trees

Homework

Exercises 6.1: 1, 2, 3, 7, 9, 11a
Exercises 6.2: 1, 4
Exercises 6.3: 1, 2, 3, 4, 7

Read Sections 6.1, 6.2, 6.3 and 7.4

Next: More representation change methods: 
Heaps, Heapsort and Horner’s Rule


