2/22/17

CSC 8301- Design and Analysis of Algorithms

Lecture 6

Divide and Conquer
Algorithm Design Technique

Divide-and-Conquer
The most-well known algorithm design strategy:

1. Divide a problem instance into two or more smaller instances
(ideally of about the same size)

2. Solve the smaller instances (usually recursively)

3. Obtain a solution to the original instance by combining these
solutions to the smaller instances



2/22/17

Divide-and-Conquer Technique (cont.)

a problem of size n
subproblem 1
of size n/2

subproblem 2

of size n/2
a solution to a solution to
subproblem 1 subproblem 2
a solution to

the original problem

Divide-and-Conquer Examples



2/22/17

General Divide-and-Conquer Recurrence

T(n) = aT(n/b) + f(n) where f(n) € O(n?), d=>0

General Divide-and-Conquer Recurrence
T(n) = aT(n/b) + f (n) where fin) € O(n?), d=>0
Master Theorem: Ifa <b?, T(n) € O(nY)

Ifa=b% T(n) € O(n‘log n)
Ifa>b?, T(n)e®Omner)

Note: The same results hold with O instead of ®

Examples: T(n) =4T(n/2)+n = T(n) € ?
T(n)=4T(n/2) + n*> = T(n) € ?
T(n)=4Tn/2) +n* = T(n) € ?



Master Theorem — Recursion Tree

T(n)=aT(n/b) + f(n)
Visualize this as a recursion tree (branch factor a):

Time

Recursion tree:

f(n) f(n)
P i \(l
f(n/b) f(n/b) --- f(n/b) af(n/b)
log,n / I N
f(n/b?) f(n/b*) --- f(n/b?) a’f(n/b?)

/ 32
[ #leaves = a”
— (’lm:-/,n

(1)

— ”lm:-/,.l

Total time depends on how fast f{(n) grows compared with the
number of leaves (d compared with log,a)

Divide-and-Conquer Examples

o Sorting: mergesort and quicksort
o Binary tree traversals

o Binary search (?)

o Multiplication of large integers

o Closest-pair algorithm

2/22/17



2/22/17

Mergesort

o Split array A[0..n-1] in two about equal halves and make copies
of each half in arrays B and C
a Sort arrays B and C recursively
o Merge sorted arrays B and C into array A as follows:
— Repeat until no elements remain in one of the arrays:
» compare the first elements in the remaining unprocessed
portions of the arrays
* copy the smaller of the two into A, while incrementing
the index indicating the unprocessed portion of that array

— Once all elements in one of the arrays are processed, copy
the remaining unprocessed elements from the other array
into A

Mergesort Example

83297154



2/22/17

Merging of Two Sorted Arrays

ALGORITHM Merge(B[0..p — 1], C[0..g — 1], A[0.p +g —1])

/IMerges two sorted arrays into one sorted array
/Mnput: Arrays Bl0..p — 1] and C[0..g — 1] both sorted
/fOutput: Sorted array A[0..p + ¢ — 1] of the clements of B and C
P00 j<—0 k<0
while { < pand j < g do

if Bli} < ClJ]

A[k] < Bil; i «i+1

else A[k] < C[j}; j«j+1

k—k+1
ifi=p

copy Clj.g —11to Alk..p +¢q — 1]
else copy Bli..p — 1]to Alk..p + ¢ — 1]

Analysis of Mergesort

o Recurrence for number of comparisons in the worst case:
C(n) =2C(n/2)+C,,,..(n)=2C(n/2)+n-1
C(H=0

merge



]

O

Analysis of Mergesort

Recurrence for number of comparisons in the worst case:
C(n) =2C(n/2) + C,pge(n) =2 C(n/2) + n-1
C(H)=0

All cases have same efficiency: O(n log n)
Space requirement: ®(n) (not in-place)

Can be implemented without recursion (bottom-up)

Quicksort

o Select a pivot (partitioning element) — here, the first element
o Rearrange the list so that all the elements in the first s positions

are smaller than or equal to the pivot and all the elements in the
remaining n-s positions are larger than or equal to the pivot

(see next slide for an algorithm)
S

p

. J A _/
Y '

Alil<p A[i]2p

o Exchange the pivot with the last element in the first (i.e., <

subarray — the pivot is now in its final position

o Sort the two subarrays recursively

2/22/17



Two-Way (Hoar’ s) Partitioning Algorithm

Algorithm Partition(A[l..r])
[ {Partitions a subarray by using #s first element as a pivot
/ /lmput: A subarray A[l..r] of A[0..n — 1], defined by its left and right

¥ indices I and r (I < )

/ /Output: A partition of A[l.r], with the split position returned as
I this function’s value

P+ Afl]

i1l j+r+1

repeat

repeat i + i +1 until Af{] >
repeat j + j — 1 until A[j]s p
swap(A[f], A[j])

until ¢ > 4

swap(A[d], A[§]) //undo last swap when ¢ > j

swap (A[l], A[j])

return j

Quicksort Example

83297154

2/22/17



2/22/17

Analysis of Quicksort

o Best-case time efficiency: split in the middle — O(n log n)

o Worst-case time efficiency: sorted array! — ©@(n?)

o Average case time efficiency: random arrays — O(n log n)

Analysis of Quicksort

Not stable

Space efficiency: O(log n) on average (recursive calls)

(]

O

O

Improvements:
— better pivot selection: median-of-three partitioning

— stop recursive calls when unsorted subarrays become small
(say, <10 elements) and finish sorting with insertion sort

These yields about 20% improvement

o Considered the method of choice for sorting random files of
nontrivial sizes



2/22/17

Binary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!

Example 1: Classic traversals O
o Preorder: root, left, right

a Inorder: left, root, right

o Postorder: left, right, root

Algorithm Inorder(T)
if7#=

Inorder(T,,z)
print(root of 7)
Inorder (T4,

Extended Binary Tree

o Replace every null subtree of the original tree with special extra nodes
(called extended or external)

o How many extended nodes in a tree with n (original) nodes?

10



Binary Tree Algorithms (cont.)

Example 2: Computing the height of a binary tree

o The height is the length of the longest path (counting edges)
on the way from the root to a leaf

o The height of a single node is 0
O

h(T) = max{h(Ty), h(Tp)} +1 if T and h(J)=-1
Efficiency: O(n)

Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers
represented by arrays of their digits such as:

A =12345678901357986429 B = 87654321284820912836

The grade-school algorithm:

a a... a,
b by... b,
(dIO) d11d12 dln

(dZO) d21d22 cee d2n

(an) dnlan cee dnn

Efficiency: n? one-digit multiplications

2/22/17

11



2/22/17

First Divide-and-Conquer Algorithm

A small example: A * B where A=2135 and B =4014
A=(21-10%+35), B=(40 10>+ 14)
So, A* B=(21 -10% + 35) * (40 - 102 + 14)

=21 %40 -10* + (21 * 14 + 35 % 40) - 10> + 35 = 14

In general, if A=A,A,and B =B,;B, (where A and B are n-digit,
A, A,, B,, B, are n/2-digit numbers),
A * B :Al * BIIO" + (Al * B2+A2* Bl) '10’1/2+A2* B2

Recurrence for the number of one-digit multiplications M(n):
M(n) =4M(n/2), M(1)=1
Solution: M(n) = n?

Second Divide-and-Conquer Algorithm

The idea is to decrease the number of multiplications from 4 to 3:

(A TA))*(B; +B,)=A;*B; + (A *B,+A,*B)) + A, * B,
Le,(Aj* B+ A% B)=(A; +Ay)* (B +B,)-A*B; - Ay * B,
which requires only 3 multiplications at the expense of (4-1) extra

add/sub.

Recurrence for the number of multiplications M(n):
M(n) =3M(n/2), M(1)=1

Solution: M(n) = 3108 27 = ;10823 ~ ;1.585

12



2/22/17

Closest-Pair Problem by Divide-and-Conquer

Step 1 Divide the points given into two subsets P, and P, by a
vertical line x = m so that half the points lie to the left or on the
line and half the points lie to the right or on the line.

X=m
o L]
L]
4 a
D/O / r
o
L]
o
[e]
2d xd
rectangle ® . .
o d=min{d, d.}
d d

Closest Pair by Divide-and-Conquer (cont.)

Step 2 Find recursively the closest pairs for the left and right
subsets.

Step 3 Setd =min{d, d,.}
We can limit our attention to the points in the symmetric
vertical strip S of width 2d as possible closest pair. (The
points are stored and processed in increasing order of
their y coordinates.)

Step 4 Scan the points in the vertical strip S from the lowest up.
For every point p(x,y) in the strip, inspect points in
in the strip that may be closer to p than d. There can be
no more than 5 such points following p on the strip list!

13



Efficiency of the Closest-Pair Algorithm

Recurrence for the Running time of the algorithm
T(n) =2T(n/2) + M(n), where M(n) € O(n)

By the Master Theorem (witha=2,b=2,d=1)
T(n) € O(n log n)

Homework

Reading: Chapter 5, Appendix B (pp. 487-491)
Exercises:

- 51:1,2,3,6,8

- 52:1,7,8,9

- 53:1,2,5,8

- 54:2,3

— 5.5:2

Next: Transform and Conquer (Ch. 6)

2/22/17

14



