
2/22/17

1

CSC 8301- Design and Analysis of Algorithms

Lecture 6

Divide and Conquer
Algorithm Design Technique

Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide a problem instance into two or more smaller instances
(ideally of about the same size)

2. Solve the smaller instances (usually recursively)

3. Obtain a solution to the original instance by combining these
solutions to the smaller instances

2/22/17

2

Divide-and-Conquer Technique (cont.)

subproblem 2	
of	size	n/2

subproblem 1	
of	size	n/2

a	solution	to	
subproblem 1

a	solution	to
the	original	problem

a	solution	to	
subproblem 2

a	problem	of	size	n

Divide-and-Conquer Examples

2/22/17

3

General	Divide-and-Conquer	Recurrence

T(n) = aT(n/b) + f (n) where f(n) Î Q(nd), d ³ 0

General	Divide-and-Conquer	Recurrence

T(n) = aT(n/b) + f (n) where f(n) Î Q(nd), d ³ 0

Master Theorem: If a < bd, T(n) Î Q(nd)
If a = bd, T(n) Î Q(nd log n)
If a > bd, T(n) Î Q(nlog b a)

Note: The same results hold with O instead of Q

Examples: T(n) = 4T(n/2) + n Þ T(n) Î ?
T(n) = 4T(n/2) + n2 Þ T(n) Î ?
T(n) = 4T(n/2) + n3 Þ T(n) Î ?

2/22/17

4

Master	Theorem	– Recursion	Tree

T(n) = aT(n/b) + f (n)
Visualize this as a recursion tree (branch factor a):

Total time depends on how fast f(n) grows compared with the
number of leaves (d compared with logba)

Time

Divide-and-Conquer Examples

q Sorting: mergesort and quicksort

q Binary tree traversals

q Binary search (?)

q Multiplication of large integers

q Closest-pair algorithm

2/22/17

5

Mergesort
q Split array A[0..n-1] in two about equal halves and make copies

of each half in arrays B and C
q Sort arrays B and C recursively
q Merge sorted arrays B and C into array A as follows:

– Repeat until no elements remain in one of the arrays:
• compare the first elements in the remaining unprocessed

portions of the arrays
• copy the smaller of the two into A, while incrementing

the index indicating the unprocessed portion of that array
– Once all elements in one of the arrays are processed, copy

the remaining unprocessed elements from the other array
into A

Mergesort Example

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

2/22/17

6

Merging of Two Sorted Arrays

Analysis of Mergesort

q Recurrence for number of comparisons in the worst case:
C(n) = 2 C(n/2) + Cmerge(n) = 2 C(n/2) + n-1
C(1) = 0

2/22/17

7

Analysis of Mergesort

q Recurrence for number of comparisons in the worst case:
C(n) = 2 C(n/2) + Cmerge(n) = 2 C(n/2) + n-1
C(1) = 0

q All cases have same efficiency: Θ(n log n)

q Space requirement: Θ(n) (not in-place)

q Can be implemented without recursion (bottom-up)

Quicksort

q Select a pivot (partitioning element) – here, the first element
q Rearrange the list so that all the elements in the first s positions

are smaller than or equal to the pivot and all the elements in the
remaining n-s positions are larger than or equal to the pivot
(see next slide for an algorithm)

q Exchange the pivot with the last element in the first (i.e., £)
subarray — the pivot is now in its final position

q Sort the two subarrays recursively

p

A[i]£p A[i]³p

s

2/22/17

8

Two-Way (Hoar’s) Partitioning Algorithm

≤

Quicksort Example

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

2/22/17

9

Analysis of Quicksort
q Best-case time efficiency: split in the middle — Θ(n log n)

q Worst-case time efficiency: sorted array! — Θ(n2)

q Average case time efficiency: random arrays — Θ(n log n)

Analysis of Quicksort
q Not stable
q Space efficiency: Θ(log n) on average (recursive calls)

q Improvements:
– better pivot selection: median-of-three partitioning
– stop recursive calls when unsorted subarrays become small

(say, <10 elements) and finish sorting with insertion sort
These yields about 20% improvement

q Considered the method of choice for sorting random files of
nontrivial sizes

2/22/17

10

Binary Tree Algorithms
Binary tree is a divide-and-conquer ready structure!

Example 1: Classic traversals
q Preorder: root, left, right
q Inorder: left, root, right
q Postorder: left, right, root

Algorithm Inorder(T)
if T ¹ Æ

Inorder(Tleft)
print(root of T)
Inorder(Tright)

T TL R

Extended Binary Tree
q Replace every null subtree of the original tree with special extra nodes

(called extended or external)

q How many extended nodes in a tree with n (original) nodes?

2/22/17

11

Binary Tree Algorithms (cont.)

Example 2: Computing the height of a binary tree
q The height is the length of the longest path (counting edges)

on the way from the root to a leaf
q The height of a single node is 0

T TL R

h(T) = max{h(TL), h(TR)} + 1 if T ¹ Æ and h(Æ) = -1

Efficiency: Θ(n)

Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers
represented by arrays of their digits such as:

A = 12345678901357986429 B = 87654321284820912836

The grade-school algorithm:
a1 a2 … an
b1 b2 … bn

(d10) d11d12 … d1n

(d20) d21d22 … d2n

… … … … … … …
(dn0) dn1dn2 … dnn

Efficiency: n2 one-digit multiplications

2/22/17

12

First Divide-and-Conquer Algorithm

A small example: A * B where A = 2135 and B = 4014
A = (21·102 + 35), B = (40 ·102 + 14)
So, A * B = (21 ·102 + 35) * (40 ·102 + 14)

= 21 * 40 ·104 + (21 * 14 + 35 * 40) ·102 + 35 * 14

In general, if A = A1A2 and B = B1B2 (where A and B are n-digit,
A1, A2, B1, B2 are n/2-digit numbers),
A * B = A1 * B1·10n + (A1 * B2 + A2 * B1) ·10n/2 + A2 * B2

Recurrence for the number of one-digit multiplications M(n):
M(n) = 4M(n/2), M(1) = 1

Solution: M(n) = n2

Second Divide-and-Conquer Algorithm

A * B = A1 * B1·10n + (A1 * B2 + A2 * B1) ·10n/2 + A2 * B2

The idea is to decrease the number of multiplications from 4 to 3:

(A1 + A2) * (B1 + B2) = A1 * B1 + (A1 * B2 + A2 * B1) + A2 * B2,

I.e., (A1 * B2 + A2 * B1) = (A1 + A2) * (B1 + B2) - A1 * B1 - A2 * B2,
which requires only 3 multiplications at the expense of (4-1) extra
add/sub.

Recurrence for the number of multiplications M(n):
M(n) = 3M(n/2), M(1) = 1

Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585

2/22/17

13

Closest-Pair Problem by Divide-and-Conquer

Step 1 Divide the points given into two subsets Pl and Pr by a
vertical line x = m so that half the points lie to the left or on the
line and half the points lie to the right or on the line.

x = m

d l dr

d d

d = min{dl, dr}

2d	x d
rectangle

Closest Pair by Divide-and-Conquer (cont.)

Step 2 Find recursively the closest pairs for the left and right
subsets.

Step 3 Set d = min{dl, dr}
We can limit our attention to the points in the symmetric
vertical strip S of width 2d as possible closest pair. (The
points are stored and processed in increasing order of
their y coordinates.)

Step 4 Scan the points in the vertical strip S from the lowest up.
For every point p(x,y) in the strip, inspect points in
in the strip that may be closer to p than d. There can be
no more than 5 such points following p on the strip list!

2/22/17

14

Efficiency of the Closest-Pair Algorithm

Recurrence for the Running time of the algorithm

T(n) = 2T(n/2) + M(n), where M(n) Î O(n)

By the Master Theorem (with a = 2, b = 2, d = 1)
T(n) Î O(n log n)

Homework

Reading: Chapter 5, Appendix B (pp. 487-491)
Exercises:

– 5.1: 1, 2, 3, 6, 8
– 5.2: 1, 7, 8, 9
– 5.3: 1, 2, 5, 8
– 5.4: 2, 3
– 5.5: 2

Next: Transform and Conquer (Ch. 6)

