CSC 8301- Design and Analysis of Algorithms

Lecture 6

Divide and Conquer
Algorithm Design Technique

Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide a problem instance into two or more smaller instances (ideally of about the same size)
2. Solve the smaller instances (usually recursively)
3. Obtain a solution to the original instance by combining these solutions to the smaller instances

Divide-and-Conquer Technique (cont.)

Divide-and-Conquer Examples

General Divide-and-Conquer Recurrence

$T(n)=a T(n / b)+f(n) \quad$ where $f(n) \in \Theta\left(n^{d}\right), \quad d \geq 0$

General Divide-and-Conquer Recurrence

$T(n)=a T(n / b)+f(n) \quad$ where $f(n) \in \Theta\left(n^{d}\right), \quad d \geq 0$

Master Theorem: If $a<b^{d}, \quad T(n) \in \Theta\left(n^{d}\right)$

$$
\text { If } a=b^{d}, \quad T(n) \in \Theta\left(n^{d} \log n\right)
$$

$$
\text { If } a>b^{d}, \quad T(n) \in \Theta\left(n^{\log _{b} a}\right)
$$

Note: The same results hold with O instead of Θ

Examples: $T(n)=4 T(n / 2)+n \Rightarrow T(n) \in$?

$$
T(n)=4 T(n / 2)+n^{2} \Rightarrow T(n) \in ?
$$

$$
T(n)=4 T(n / 2)+n^{3} \Rightarrow T(n) \in ?
$$

Master Theorem - Recursion Tree

$T(n)=a T(n / b)+f(n)$
Visualize this as a recursion tree (branch factor a):

Total time depends on how fast $f(n)$ grows compared with the number of leaves (d compared with $\log _{b} a$)

Divide-and-Conquer Examples

- Sorting: mergesort and quicksort
- Binary tree traversals
- Binary search (?)
- Multiplication of large integers
- Closest-pair algorithm

Mergesort

- Split array A[0..n-1] in two about equal halves and make copies of each half in arrays B and C
- Sort arrays B and C recursively
- Merge sorted arrays B and C into array A as follows:
- Repeat until no elements remain in one of the arrays:
- compare the first elements in the remaining unprocessed portions of the arrays
- copy the smaller of the two into A , while incrementing the index indicating the unprocessed portion of that array
- Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A

Mergesort Example

83297154

Merging of Two Sorted Arrays

```
ALGORITHM \(\operatorname{Merge}(B[0 . . p-1], C[0 . . q-1], A[0 . . p+q-1])\)
    //Merges two sorted arrays into one sorted array
    //Input: Arrays \(B[0 . . p-1]\) and \(C[0 . . q-1]\) both sorted
    //Output: Sorted array \(A[0 . . p+q-1]\) of the elements of \(B\) and \(C\)
    \(i \leftarrow 0 ; j \leftarrow 0 ; k \leftarrow 0\)
    while \(i<p\) and \(j<q\) do
        if \(B[i] \leq C[j]\)
            \(A[k] \leftarrow B[i] ; i \leftarrow i+1\)
        else \(A[k] \leftarrow C[j] ; j \leftarrow j+1\)
        \(k \leftarrow k+1\)
    if \(i=p\)
        copy \(C[j \ldots q-1]\) to \(A[k . . p+q-1]\)
    else copy \(B[i . . p-1]\) to \(A[k . . p+q-1]\)
```


Analysis of Mergesort

- Recurrence for number of comparisons in the worst case:

$$
\begin{aligned}
& \mathrm{C}(n)=2 \mathrm{C}(n / 2)+\mathrm{C}_{\text {merge }}(n)=2 \mathrm{C}(n / 2)+n-1 \\
& \mathrm{C}(1)=0
\end{aligned}
$$

Analysis of Mergesort

a Recurrence for number of comparisons in the worst case:

$$
\begin{aligned}
& \mathrm{C}(n)=2 \mathrm{C}(n / 2)+\mathrm{C}_{\text {merge }}(n)=2 \mathrm{C}(n / 2)+n-1 \\
& \mathrm{C}(1)=0
\end{aligned}
$$

- All cases have same efficiency: $\Theta(n \log n)$
- Space requirement: $\Theta(n)$ (not in-place)
- Can be implemented without recursion (bottom-up)

Quicksort

- Select a pivot (partitioning element) - here, the first element
- Rearrange the list so that all the elements in the first s positions are smaller than or equal to the pivot and all the elements in the remaining $n-s$ positions are larger than or equal to the pivot (see next slide for an algorithm)

- Exchange the pivot with the last element in the first (i.e., \leq) subarray - the pivot is now in its final position
- Sort the two subarrays recursively

Two-Way (Hoar's) Partitioning Algorithm

```
Algorithm Partition(A[l.r])
//Partitions a subarray by using its first element as a pivot
//Input: A subarray A[l..r] of A[0..n-1], defined by its left and right
// indices l and r (l<r)
//Output: A partition of }A[l..r],\mathrm{ with the split position returned as
// this function's value
p\leftarrowA[l]
i\leftarrowl; j\leftarrowr+1
repeat
    repeat i\leftarrowi+1 until }A[i]\geq
    repeat j\leftarrowj-1 until }A[j]\leq
    swap(A[i], A[j])
until i\geqj
swap(A[i],A[j]) //undo last swap when i\geqj
swap(A[l],A[j])
return j
```


Quicksort Example

Analysis of Quicksort

- Best-case time efficiency: split in the middle $-\Theta(n \log n)$
- Worst-case time efficiency: sorted array! - $\Theta\left(n^{2}\right)$
- Average case time efficiency: random arrays - $\Theta(n \log n)$

Analysis of Quicksort

- Not stable
- Space efficiency: $\Theta(\log n)$ on average (recursive calls)
- Improvements:
- better pivot selection: median-of-three partitioning
- stop recursive calls when unsorted subarrays become small (say, <10 elements) and finish sorting with insertion sort These yields about 20% improvement
- Considered the method of choice for sorting random files of nontrivial sizes

Binary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!

Example 1: Classic traversals

- Preorder: root, left, right
- Inorder: left, root, right
- Postorder: left, right, root

Algorithm Inorder (T)

if $T \neq \varnothing$
$\operatorname{Inorder}\left(T_{\text {left }}\right)$
print(root of T)
Inorder $\left(T_{\text {right }}\right)$

Extended Binary Tree

- Replace every null subtree of the original tree with special extra nodes (called extended or external)

- How many extended nodes in a tree with n (original) nodes?

Binary Tree Algorithms (cont.)

Example 2: Computing the height of a binary tree

- The height is the length of the longest path (counting edges) on the way from the root to a leaf
- The height of a single node is 0

$h(T)=\max \left\{h\left(T_{\mathrm{L}}\right), h\left(T_{\mathrm{R}}\right)\right\}+1$ if $T \neq \varnothing$ and $h(\varnothing)=-1$
Efficiency: $\boldsymbol{\Theta}(n)$

Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers represented by arrays of their digits such as:

$$
A=12345678901357986429 \quad B=87654321284820912836
$$

The grade-school algorithm:

$$
\begin{gathered}
a_{1} a_{2} \ldots a_{n} \\
b_{1} b_{2} \ldots b_{n} \\
\left(d_{10}\right) \frac{d_{11} d_{12} \ldots d_{1 n}}{} \\
\left(d_{20}\right) d_{21} d_{22} \ldots d_{2 n} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\left(d_{n 0}\right) d_{n 1} d_{n 2} \ldots d_{n n}
\end{gathered}
$$

Efficiency: n^{2} one-digit multiplications

First Divide-and-Conquer Algorithm

A small example: $\mathrm{A} * \mathrm{~B}$ where $\mathrm{A}=2135$ and $\mathrm{B}=4014$

$$
\begin{aligned}
& \mathrm{A}=\left(21 \cdot 10^{2}+35\right), \mathrm{B}=\left(40 \cdot 10^{2}+14\right) \\
& \text { So, } \mathrm{A} * \mathrm{~B}=\left(21 \cdot 10^{2}+35\right) *\left(40 \cdot 10^{2}+14\right) \\
& \quad=21 * 40 \cdot 10^{4}+(21 * 14+35 * 40) \cdot 10^{2}+35 * 14
\end{aligned}
$$

In general, if $\mathrm{A}=\mathrm{A}_{1} \mathrm{~A}_{2}$ and $\mathrm{B}=\mathrm{B}_{1} \mathrm{~B}_{2}$ (where A and B are n-digit, $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ are $n / 2$-digit numbers),
$\mathrm{A} * \mathrm{~B}=\mathrm{A}_{1} * \mathrm{~B}_{1} \cdot 10^{n}+\left(\mathrm{A}_{1} * \mathrm{~B}_{2}+\mathrm{A}_{2} * \mathrm{~B}_{1}\right) \cdot 10^{n / 2}+\mathrm{A}_{2} * \mathrm{~B}_{2}$
Recurrence for the number of one-digit multiplications $\mathrm{M}(n)$:

$$
\mathrm{M}(n)=4 \mathrm{M}(n / 2), \quad \mathrm{M}(1)=1
$$

Solution: $\mathrm{M}(n)=n^{2}$

Second Divide-and-Conquer Algorithm

$$
\mathrm{A} * \mathrm{~B}=\mathrm{A}_{1} * \mathrm{~B}_{1} \cdot 10^{n}+\left(\mathrm{A}_{1} * \mathrm{~B}_{2}+\mathrm{A}_{2} * \mathrm{~B}_{1}\right) \cdot 10^{n / 2}+\mathrm{A}_{2} * \mathrm{~B}_{2}
$$

The idea is to decrease the number of multiplications from 4 to 3 :

$$
\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right) *\left(\mathrm{~B}_{1}+\mathrm{B}_{2}\right)=\mathrm{A}_{1} * \mathrm{~B}_{1}+\left(\mathrm{A}_{1} * \mathbf{B}_{2}+\mathbf{A}_{2} * \mathbf{B}_{1}\right)+\mathrm{A}_{2} * \mathrm{~B}_{2},
$$

I.e., $\left(\mathbf{A}_{1} * \mathbf{B}_{2}+\mathbf{A}_{2} * \mathbf{B}_{1}\right)=\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right) *\left(\mathrm{~B}_{1}+\mathrm{B}_{2}\right)-\mathrm{A}_{1} * \mathrm{~B}_{1}-\mathrm{A}_{2} * \mathrm{~B}_{2}$, which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the number of multiplications $\mathrm{M}(n)$:

$$
\mathrm{M}(n)=3 M(n / 2), \quad \mathrm{M}(1)=1
$$

Solution: $\mathrm{M}(n)=3^{\log _{2} n}=n^{\log _{2} 3} \approx n^{1.585}$

Closest-Pair Problem by Divide-and-Conquer

Step 1 Divide the points given into two subsets P_{l} and P_{r} by a vertical line $x=m$ so that half the points lie to the left or on the line and half the points lie to the right or on the line.

Closest Pair by Divide-and-Conquer (cont.)

Step 2 Find recursively the closest pairs for the left and right subsets.

Step 3 Set $d=\min \left\{d_{l}, d_{r}\right\}$
We can limit our attention to the points in the symmetric vertical strip S of width $2 d$ as possible closest pair. (The points are stored and processed in increasing order of their y coordinates.)
Step 4 Scan the points in the vertical strip S from the lowest up. For every point $p(x, y)$ in the strip, inspect points in in the strip that may be closer to p than d. There can be no more than 5 such points following p on the strip list!

Efficiency of the Closest-Pair Algorithm

Recurrence for the Running time of the algorithm

$$
\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+\mathrm{M}(n), \text { where } \mathrm{M}(n) \in \mathrm{O}(n)
$$

By the Master Theorem (with $a=2, b=2, d=1$)

$$
\mathrm{T}(n) \in \mathrm{O}(n \log n)
$$

Homework

Reading: Chapter 5, Appendix B (pp. 487-491)

Exercises:

- 5.1: $1,2,3,6,8$
- 5.2:1,7,8, 9
- 5.3:1, 2, 5, 8
- 5.4: 2, 3
- 5.5: 2

Next: Transform and Conquer (Ch. 6)

