
2/15/17

1

CSC 8301- Design and Analysis of Algorithms

Lecture 5

Decrease and Conquer
Algorithm Design Technique

Decrease-and-Conquer

This algorithm design technique is based on exploiting a relationship
between a solution to a given instance of the problem in question and
its smaller instance.

Once such a relationship is found, it can be exploited either top down
(usually but not necessarily recursively) or bottom up.

It’s probably the first alternative to brute force one should try in
facing an unfamiliar problem.

2/15/17

2

3 Types of Decrease-and-Conquer

q Decrease by a constant (usually by 1):
– insertion sort
– algorithms for generating permutations, subsets

q Decrease by a constant factor (usually by half)
– binary search
– exponentiation by squaring

q Variable-size decrease
– Euclid’s algorithm gcd(m,n) =
– selection by partition

What’s the difference?

Consider the problem of exponentiation: Compute an

q Decrease by one:

an =

q Decrease by half:

an =

2/15/17

3

Insertion Sort
To sort array A[0..n-1], sort A[0..n-2] recursively and then insert

A[n-1] in its proper place among the sorted A[0..n-2]

Example: Sort 6, 4, 1, 8, 5

Usually implemented bottom up (nonrecursively)

6 | 4 1 8 5

Pseudocode of Insertion Sort

2/15/17

4

Analysis of Insertion Sort

q Time efficiency

Cworst(n) =

Cbest(n) =

Cavg(n) ≈ n2/4 Î Θ(n2)

Analysis of Insertion Sort

q Space efficiency: in-place

q Stability: yes

q Best elementary sorting algorithm overall

2/15/17

5

Dags and Topological Sorting
DAG: Directed Acyclic Graph (no directed cycles)

q Arise in modeling many problems that involve prerequisite
constraints (construction projects, document version control)

q Topological sorting:
– Linear ordering of vertices such that, for each edge, the start

vertex appears before the end vertex
– Possible on DAGs only

a b

c d

a b

c d

a dag not a dag

Topological Sorting Example

C1 and C2 have no prerequisites
C3 requires C1 and C2
C4 requires C3
C5 requires C3 and C4

Students can take only one course per term.
In what order should the students take the courses?

C1

C3

C2

C5

C4

2/15/17

6

Topological Sorting: DFS-based Algorithm
DFS-based algorithm for topological sorting

– Perform DFS traversal, noting the order vertices are
popped off the traversal stack

– Reverse order solves topological sorting problem
– Back edges encountered?→ NOT a dag!

Example:

Efficiency:

a b

e f

c d

g h

Topological Sorting: Source Removal Algorithm

Source removal algorithm
Repeatedly identify and remove a source (a vertex with no
incoming edges) and all the edges incident to it until either no
vertex is left (problem is solved) or there is no source among
remaining vertices (not a dag)

Example:

Efficiency: same as efficiency of the DFS-based algorithm

a b

e f

c d

g h

2/15/17

7

Generating Permutations
Decrease by one:
q Generate all (n-1)! permutations of {1, 2, …, n-1}
q Insert n in each of the n positions of each permutation

Example: n = 3

Generating minimal-change permutations

Minimal-change: each permutation differs from its predecessor by
two adjacent elements

If n = 1 return 1; otherwise, generate recursively the list of all
permutations of 12…n-1 and then insert n into each of those
permutations by starting with inserting n into 12...n-1 by moving
right to left and then switching direction for each new permutation

Example: n = 3

2/15/17

8

Other permutation generating algorithms

q Johnson-Trotter (p. 145 in the 3rd ed. of the textbook)

q Lexicographic-order algorithm (p. 146 in the 3rd ed.)

q Heap’s algorithm (Problem 4 in Exercises 4.3 in the 3rd ed.)

Generating Subsets
Decrease by one:
q Generate all subsets of {1, 2, …, n-1}, including the empty set
q Add n to each subset

Example: n = 3

Subset Corresponding Bit String

2/15/17

9

Generating minimal-change subsets

Binary reflected Gray code: minimal-change algorithm for generating
2n bit strings corresponding to all the subsets of an n-element set
where n > 0

Minimal-change: each bit string differs from its predecessor by a
single bit

If n = 1 make list L of two bit strings 0 and 1
else

generate recursively list L1 of bit strings of length n-1
copy list L1 in reverse order to get list L2
add 0 in front of each bit string in list L1
add 1 in front of each bit string in list L2
append L2 to L1 to get L

return L

Binary reflected Grey code example

2/15/17

10

Decrease-by-Constant-Factor Algorithms

In this variation of decrease-and-conquer, instance size is reduced by
the same factor (typically, 2)

Examples:
• Exponentiation by squaring

• Binary search and the method of bisection (pp. 460−463)

• Multiplication à la russe (Russian peasant method)

• Fake-coin puzzle

Binary Search
Very efficient algorithm for searching in sorted array:

K
vs

A[0] . . . A[m] . . . A[n-1]

If K = A[m], stop (successful search); otherwise, continue
searching by the same method in A[0..m-1] if K < A[m]
and in A[m+1..n-1] if K > A[m]

2/15/17

11

Binary Search (non-recursive)

l ¬ 0; r ¬ n-1
while l £ r do

m ¬ ë(l+r)/2û
if K = A[m] return m
else if K < A[m] r ¬ m-1
else l ¬ m+1

return -1

Worst case recurrence relation:

Notes on Binary Search

q Time efficiency
– worst-case recurrence: Cw (n) = 1 + Cw(ën/2û), Cw (1) = 1

solution: Cw(n) = élog2(n+1)ù

This is VERY fast: e.g., Cw(106) = 20

q Optimal for searching a sorted array

q Limitations: must be a sorted array (not linked list)

q Has a continuous counterpart called bisection method for solving
equations in one unknown f(x) = 0 (see Sec. 12.4)

2/15/17

12

Russian Peasant Multiplication

The problem: Compute the product of two positive integers

Can be solved by a decrease-by-half algorithm based on the
following formulas:

For even values of n:

For odd values of n:

n * m = * 2mn
2

Example of Russian Peasant Multiplication

Compute 20 * 26

n m
20 26

2/15/17

13

Fake-Coin Puzzle (simpler version)

There are n identically looking coins one of which is fake.
There is a balance scale but there are no weights; the scale can tell
whether two sets of coins weigh the same and, if not, which of the
two sets is heavier (but not by how much). Design an efficient
algorithm for detecting the fake coin. Assume that the fake coin is
known to be lighter than the genuine ones.

Decrease by factor 2 algorithm

Variable-Size-Decrease Algorithms

In the variable-size-decrease variation of decrease-and-conquer,
instance size reduction varies from one iteration to another

Examples:

• Euclid’s algorithm for greatest common divisor

• Partition-based algorithm for selection problem

• Some algorithms on binary search trees

2/15/17

14

Euclid’s algorithm is based on repeated application of equality
gcd(m, n) = gcd(n, m mod n)

Ex.: gcd(80,44) = gcd(44,36) = gcd(36, 12) = gcd(12,0) = 12

One can prove that the size, measured by the second number,
decreases at least by half after two consecutive iterations.

Hence, T(n) Î O(log n)

Euclid’s Algorithm

Selection Problem

Find the k-th smallest element in a list of n numbers
q k = 1 or k = n

q median: k = én/2ù
Example: 4, 1, 10, 9, 7, 12, 8, 2, 15 median = ?

The median is used in statistics as a measure of an average
value of a sample. In fact, it is a better (more robust) indicator
than the mean, which is used for the same purpose.

2/15/17

15

Algorithms for the Selection Problem
The sorting-based algorithm: Sort and return the k-th element
Efficiency (if sorted by mergesort): Θ(nlog n)

A faster algorithm is based on the array partitioning:

Assuming that the array is indexed from 0 to n-1 and s is a split position
obtained by the array partitioning:
If s = k-1, the problem is solved;
if s > k-1, look for the k-th smallest element in the left part;
if s < k-1, look for the (k-s)-th smallest element in the right part.

Note: The algorithm can simply continue until s = k-1

s
all are ≤ A[s] all are ≥ A[s]

Two Partitioning Algorithms

There are two principal ways to partition an array:

q One-directional scan (Lomuto’s partitioning algorithm)

q Two-directional scan (Hoare’s partitioning, next lecture)

Both algorithms require (n-1) key comparisons

2/15/17

16

Lomuto’s Partitioning Algorithm

Scans the array left to right maintaining the array’s partition into
three contiguous sections: < p, ³ p, and unknown, where p is the
value of the first element (the partition’s pivot).

On each iteration the unknown section is decreased by one element
until it’s empty and a partition is achieved by exchanging the pivot
with the element in the split position s.

p < p >= p ?
l s i r

p < p >= p
l s r

Tracing Lomuto’s Partioning Algorithm

s i

5 1 10 7 2 6 9 4 15

2/15/17

17

Tracing Quickselect (Partition-based Algorithm)

Find the median of 4, 1, 10, 9, 7, 12, 8, 2, 15
Here: n = 9, k = é9/2ù = 5, k -1=4

0 1 2 3 4 5 6 7 8
5 1 9 7 2 12 10 4 15

4 1 2 5 9 12 10 7 15

9 12 10 7 15

after 1st partitioning: s=3<k-1=4

after 2nd partitioning: s=

Worst case complexity:

Efficiency of Quickselect

Average case (average split in the middle):

C(n) = C(n/2)+(n-1) C(n) Î Θ(n)

Worst case (degenerate split): C(n) Î Θ(n2)

A more sophisticated choice of the pivot leads to a complicated
algorithm with Θ(n) worst-case efficiency.

2/15/17

18

Binary Search Tree Algorithms

Several algorithms on BST requires recursive processing of just one
of its subtrees, e.g.,

❂ Searching

❂ Insertion of a new key

❂ Finding the smallest (or the largest) key

k

<k >k

Searching in Binary Search Tree

Algorithm BTS(x, v)
//Searches for node with key equal to v in BST rooted at node x

if x = NIL return -1
else if v = K(x) return x
else if v < K(x) return BTS(left(x), v)
else return BTS(right(x), v)

Efficiency

worst case: C(n) = n
average case: C(n) ≈ 2ln n ≈ 1.4log2 n

2/15/17

19

Homework

Read: Ch. 4 and pp. 485-487 of Appendix B
Exercises:

– 4.1: 2, 4, 7, 9, 11
– 4.2: 1, 3, 5, 9
– 4.3: 5, 9a
– 4.4: 2, 4
– 4.5: 2, 7, 13

Next: Divide-and-Conquer (Ch. 5)

