
2/8/17

1

CSC 8301- Design and Analysis of Algorithms

Lecture 4
Brute Force, Exhaustive Search,
Graph Traversal Algorithms

Brute-Force Approach

Brute force is a straightforward approach to solving a
problem, usually directly based on the problem’s
statement and definitions of the concepts involved.

Example 1: Computing an (a > 0, n is a positive integer)

Example 2: Searching for a given value in a list

2/8/17

2

Brute-Force Algorithm for Sorting

Selection Sort Scan the array to find its smallest element and swap it
with the first element. Then, starting with the second element, scan
the elements to the right of it to find the smallest among them and
swap it with the second element. Generally, on pass i (0£i£n-2),
find the smallest element in A[i..n-1] and swap it with A[i]:

A[0] £ . . . £ A[i-1] | A[i], . . . , A[min], . . ., A[n-1]
in their final positions

Example: 7 8 2 3 5

Analysis of Selection Sort

• Basic	operation
• Summation	for	C(n)

2/8/17

3

• Summation	for	C(n)

C(n) = S0£i£n-1 Si+1£j£n-1 1

Closest-Pair Problem

The closest-pair problem is to find the two closest points in a set of n
points in the Cartesian plane (with the distance between two points
measured by the standard Euclidean distance formula).

Brute-force algorithm for the closest-pair problem
Compute the distance between every pair of distinct points
and return the indexes of the points for which the distance is
the smallest.

2/8/17

4

Closest-Pair Brute Force Algorithm (cont.)

• Time efficiency:

• Noteworthy improvement:

General Notes on Brute-Force Approach

Strengths:
q wide applicability
q simplicity
q yields reasonable algorithms for some important problems

(e.g., sorting, searching, matrix multiplication)

Weaknesses:
q yields efficient algorithms very rarely
q some brute-force algorithms are unacceptably slow
q not as constructive as some other design techniques

Note: Brute force can be a legitimate alternative in view of the
human time vs. computer time costs

2/8/17

5

Exhaustive search
Exhaustive search is a brute force approach to solving a problem that

involves searching for an element with a special property, usually
among combinatorial objects such permutations, combinations, or
subsets of a set.

Method:
– systematically construct all potential solutions to the problem

(often using standard algorithms for generating combinatorial
objects such as those in Sec. 4.3)

– evaluate solutions one by one, disqualifying infeasible ones
and, for optimization problems, keeping track of the best
solution found so far

– when search ends, return the (best) solution found

Example 1: Traveling salesman problem (TSP)

Given n cities with known distances between each pair, find the
shortest tour that passes through all the cities exactly once before
returning to the starting city.

Alternatively: Find shortest Hamiltonian circuit in a weighted
connected graph.

Example:

a b

c d

8

2

7

5 3
4

2/8/17

6

TSP by exhaustive search

Tour Cost
a→b→c→d→a 2+3+7+5 = 17
a→b→d→c→a 2+4+7+8 = 21
a→c→b→d→a 8+3+4+5 = 20
a→c→d→b→a 8+7+4+2 = 21
a→d→b→c→a 5+4+3+8 = 20
a→d→c→b→a 5+7+3+2 = 17

Fewer tours?

Efficiency:

Example 2: Knapsack Problem

Given n items with
weights: w1 w2 … wn

values: v1 v2 … vn

and a knapsack of capacity W,
find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity W=16
item weight value
1 2 $20
2 5 $30
3 10 $50
4 5 $10

2/8/17

7

Knapsack by exhaustive search

Subset Total weight Total value
{1} 2 $20
{2} 5 $30
{3} 10 $50
{4} 5 $10

{1,2} 7 $50
{1,3} 12 $70
{1,4} 7 $30
{2,3} 15 $80
{2,4} 10 $40
{3,4} 15 $60

{1,2,3} 17 not feasible
{1,2,4} 12 $60
{1,3,4} 17 not feasible
{2,3,4} 20 not feasible

{1,2,3,4} 22 not feasible

Efficiency:

Comments on Exhaustive Search

q Typically, exhaustive search algorithms run in a realistic amount of
time only on very small instances

q For some problems, there are much better alternatives
– shortest paths
– minimum spanning tree
– assignment problem

q In many cases, exhaustive search (or variation) is the only known
way to solve problem exactly for all its possible instances
– TSP
– knapsack problem

2/8/17

8

Graph Traversal

Many problems require processing all graph vertices (and edges) in
systematic fashion, which can be considered “exhaustive search”
algorithms

Graph traversal algorithms:

– Depth-first search (DFS)

– Breadth-first search (BFS)

Depth-First Search (DFS)

q Visits graph’s vertices by always moving away from last visited
vertex to unvisited one, backtracks if no adjacent unvisited vertex is
available.

q “Redraws” graph in tree-like fashion (with tree edges and back
edges for undirected graph)

Source: Wikipedia,
https://en.wikipedia.org/
wiki/Depth-first_search

2/8/17

9

Depth-First Search (DFS)

q Uses a stack
– a vertex is pushed onto the stack first time is reached
– a vertex is popped off the stack when it becomes a dead end, i.e.,

when there is no adjacent unvisited vertex

a b

e f

c d

g h

Example: DFS traversal of undirected graph

a b

e f

c d

g h

DFS traversal stack: DFS forest:

i

j

q Assumption: ties broken alphabetically

2/8/17

10

19

Pseudocode of DFS

Notes on DFS

q DFS can be implemented with graphs represented as:
– adjacency matrices: Θ(|V|2)
– adjacency lists: Θ(|V|+|E|)

q Yields two distinct ordering of vertices:
– order in which vertices are first encountered (pushed onto stack)
– order in which vertices become dead-ends (popped off stack)

q Applications:
– checking connectivity, finding connected components
– checking acyclicity
– searching state-space of problems for solution (AI)

2/8/17

11

Breadth-first search (BFS)

q Visits graph vertices by moving across to all the neighbors of last
visited vertex

q “Redraws” graph in tree-like fashion (with tree edges and cross
edges for undirected graph)

Source: Wikipedia,
https://en.wikipedia.org/
wiki/Breadth-first_search

22

Pseudocode of BFS

2/8/17

12

Example of BFS traversal of undirected graph

BFS traversal queue:

a b

e f

c d

g h

BFS forest:

i

j

q Instead of a stack, BFS uses a queue
q Assumption: neighbors visited in alphabetical order

Notes on BFS

q BFS has same efficiency as DFS and can be implemented with
graphs represented as:
– adjacency matrices: Θ(|V|2)
– adjacency lists: Θ(|V|+|E|)

q Yields single ordering of vertices (order added/deleted from queue
is the same)

q Applications: same as DFS, but can also find paths from a vertex to
all other vertices with the smallest number of edges

2/8/17

13

Homework

Exercises 3.1: 4, 5, 8, 11
Exercises 3.4: 1, 5, 6
Exercises 3.5: 1, 2, 4, 6

Reading:
q Sec. 3.1, 3.4 and 3.5

Next: Decrease-and-conquer (Chapter 4)

