CSC 8301- Design and Analysis of Algorithms

Lecture 3

Techniques for efficiency analysis of recursive algorithms

Time efficiency of recursive algorithms General Plan

- Decide on parameter n indicating input size
- Identify algorithm's basic operation
- Determine worst, average, and best case for inputs of size n to analyze them separately if needed
- Set up a recurrence relation and initial condition(s) for $C(n)-$ the number of times the basic operation will be executed for an input of size n
- Solve the recurrence to obtain a closed form or estimate the order of growth of the solution (see Appendix B)

Example 1: Recursive evaluation of \boldsymbol{n} !

Definition: $n!=1 * 2 * \ldots *(n-1) * n$ for $n \geq 1$ and $0!=1$
Recursive definition of $n!: F(n)=F(n-1) * n$ for $n \geq 1$ and $F(0)=1$

ALGORITHM $F(n)$

//Computes n ! recursively
//Input: A nonnegative integer n
//Output: The value of n !
if $n=0$ return 1
else return $F(n-1) * n$
Input size:
Basic operation:
Recurrence for time complexity:

Solving the recurrence (backward substitution)

$\mathrm{M}(n)=\mathrm{M}(n-1)+1$
$\mathrm{M}(0)=0$

Example 2: Tower of Hanoi Puzzle

Goal: move all n disks to peg 3

- can use peg 2 in the process

Restriction:

- cannot place a disk on top of a smaller one
Recursive solution:

Recurrence for the number of moves:

Solving the recurrence (backward substitution)

$\mathrm{M}(n)=2 \mathrm{M}(n-1)+1$
$\mathrm{M}(1)=1$

Example 3: Counting binary digits

ALGORITHM $\operatorname{BinRec}(n)$
//Input: A positive decimal integer n
//Output: The number of binary digits in n 's binary representation if $n=1$ return 1
else return $\operatorname{Bin} \operatorname{Rec}(\lfloor n / 2\rfloor)+1$

Recurrence for time complexity:

Fibonacci numbers

The Fibonacci numbers:
$0,1,1,2,3,5,8,13,21, \ldots$

Fibonacci recurrence:

$$
\begin{aligned}
& F(n)=F(n-1)+F(n-2) \\
& F(0)=0 \\
& F(1)=1
\end{aligned}
$$

2nd order linear homogeneous recurrence relation with constant coefficients (2nd order LHRRCC)

Solving 2nd order LHRRCC

Definition 2nd order linear homogeneous recurrence with constant coefficients is a recurrence of the form:

$$
a x_{n}+b x_{n-1}+c x_{n-2}=0
$$

where a, b, c are real numbers (called the coefficients), $a \neq 0$.

Unless $b=c=0$, this equation has infinitely many solutions called the general solution. A formula expressing this solution depends on the root of the quadratic equation called the characteristic equation for the above recurrence:

$$
a r^{2}+b r+c=0
$$

Theorem If the characteristic equation has two real roots r_{1}, r_{2}
then $x_{n}=c_{1} r_{1}{ }^{n}+c_{2} r_{2}{ }^{n}\left(c_{1}, c_{2}\right.$ derived from initial conditions)
If the characteristic equation has one root r, then $x_{n}=c_{1} r^{r}+c_{2} n r^{n}$

LHRRCC Example

Find the general solution for

$$
\begin{aligned}
& x(n)=5 x(n-1)-6 x(n-2) \\
& x(0)=9 \\
& x(1)=20
\end{aligned}
$$

Application to the Fibonacci numbers

The Fibonacci sequence: $0,1,1,2,3,5,8,13,21, \ldots$
The Fibonacci recurrence: $\quad F(n)-F(n-1)-F(n-2)=0$
The characteristic equation: $r^{2}-r-1=0$

The roots: $r_{1,2}=(1 \pm \sqrt{ } 5) / 2$
The general solution: $F(n)=c_{1}((1+\sqrt{5}) / 2)^{n}+c_{2}((1-\sqrt{5}) / 2)^{n}$
The particular solution - use initial conditions $F(0)=0, F(1)=1$ to obtain c_{1} and c_{2} after solving a system of two linear equations in two unknowns.

$$
\begin{aligned}
& F(n)=\left(\phi^{n}-\phi_{1}{ }^{n}\right) / \sqrt{5} \\
&\text { where } \phi=(1+\sqrt{ } 5) / 2) \approx 1.618 \text { (golden ratio), } \\
& \phi_{1}=(1-\sqrt{ } 5) / 2) \approx-0.618 .
\end{aligned}
$$

Computing Fibonacci numbers

Definition-based recursive algorithm

```
ALGORITHM F(n)
    //Computes the }n\mathrm{ th Fibonacci number recursively by using its definition
    //Input: A nonnegative integer n
    //Output: The n}n\mathrm{ th Fibonacci number
    if }n\leq1\mathrm{ return }
    else return F(n-1)+F(n-2)
```

Recurrence for time complexity:

Computing Fibonacci numbers (cont.)

Nonrecursive brute-force algorithm

```
ALGORITHM Fib(n)
    //Computes the n}n\mathrm{ th Fibonacci number iteratively by using its definition
    //Input: A nonnegative integer n
    //Output: The nth Fibonacci number
    F[0]}\leftarrow0;F[1]\leftarrow
    for }i\leftarrow2\mp@code{2 to }n\mathrm{ do
        F[i]\leftarrowF[i-1]+F[i-2]
    return F[n]
Summation for time complexity:
```


Computing Fibonacci numbers (cont.)

Explicit formula algorithm based on
$F(n)=\varphi^{n} / \sqrt{ } 5$ rounded to the nearest integer

Logarithmic algorithm based on formula:

$$
\left(\begin{array}{lr}
F(n-1) & F(n) \\
F(n) & F(n+1)
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}
$$

with an efficient way of computing matrix powers

Homework

Exercises

- 2.4: $1,3,4,8,9,12$
- $2.5: 3,7,8$

Reading:

- Sections 2.4 and 2.5
- pp. 479-485 in Appendix B

Next: Chapter 3

