
2/5/17	

1	

CSC 8301- Design and Analysis of Algorithms 

Lecture 3 
 

Techniques for efficiency analysis of 
 recursive algorithms 

 

Time efficiency of recursive algorithms 
 

General Plan 
 

q  Decide on parameter n indicating input size 

q  Identify algorithm’s basic operation 

q  Determine worst, average, and best case for inputs of size n to 
analyze them separately if needed 

q  Set up a recurrence relation and initial condition(s) for C(n) –  
the number of times the basic operation will be executed for an 
input of size n 
 

q  Solve the recurrence to obtain a closed form or estimate the 
order of growth of the solution (see Appendix B) 



2/5/17	

2	

Example 1: Recursive evaluation of n! 
Definition: n ! = 1 * 2 * … *(n-1) * n  for n ≥ 1  and  0! = 1 

Recursive definition of n!:  F(n) = F(n-1) * n  for n ≥ 1  and   
                                            F(0) = 1 
 

 
 
 
 
 
 
 
 
 
Input size: 
Basic operation: 
Recurrence for time complexity: 

Solving the recurrence (backward substitution) 
M(n) = M(n-1) + 1 
 
M(0) = 0 
 



2/5/17	

3	

Example 2: Tower of Hanoi Puzzle 

Recurrence for the number of moves: 
 

1

2

3

Goal: move all n disks to peg 3 
-  can use peg 2 in the process 
Restriction:  
-  cannot place a disk on top of a 

smaller one 
Recursive solution: 

Solving the recurrence (backward substitution) 
M(n) = 2 M(n-1) + 1 
 
M(1) = 1 
 



2/5/17	

4	

Example 3: Counting binary digits 

Recurrence for time complexity: 
 

Fibonacci numbers 

The Fibonacci numbers: 
0, 1, 1, 2, 3, 5, 8, 13, 21, …  
 

Fibonacci recurrence: 
F(n) = F(n-1) + F(n-2)  
F(0) = 0    
F(1) = 1 
 
 

2nd	order	linear	homogeneous	recurrence	
rela0on	with	constant	coefficients	(2nd	
order	LHRRCC)	



2/5/17	

5	

Solving 2nd order LHRRCC 
Defini.on		2nd	order	linear	homogeneous	recurrence	with	constant	
coefficients	is	a	recurrence	of	the	form:	

	 	 	 	axn	+	bxn-1	+	cxn-2	=	0	
where	a,	b,	c	are	real	numbers	(called	the	coefficients),	a	≠	0.		
	
Unless	b	=	c	=	0,	this	equa.on	has	infinitely	many	solu.ons	called	the	
general	solu;on.		A	formula	expressing	this	solu.on	depends	on	the	
root	of	the	quadra.c	equa.on	called	the	characteris;c	equa;on	for	
the	above	recurrence:	

	 	 	 	ar2	+	br	+	c	=	0	
	

Theorem	If	the	characteris.c	equa.on	has	two	real	roots	r1,	r2	
						then	xn	=	c1r1n		+	c2r2n		(c1,	c2	derived	from	ini.al	condi.ons)	

	

						If	the	characteris.c	equa.on	has	one	root	r,	
						then	xn	=	c1rn		+	c2nrn	

LHRRCC Example 
Find	the	general	solu.on	for		
	

	 	x(n) = 5 x(n-1) - 6x(n-2) 
  x(0) = 9 
  x(1) = 20 



2/5/17	

6	

Application to the Fibonacci numbers 

The	Fibonacci	sequence:	0,	1,	1,	2,	3,	5,	8,	13,	21,	…		
	

The	Fibonacci	recurrence:					F(n)	-	F(n-1)	-	F(n-2)	=	0	
	
The	characteris.c	equa.on:				r2			-	r		-	1	=	0	
	
The	roots:	r1,2	=	(1±√5)/2	
	
The	general	solu.on:	F(n)	=	c1((1+√5)/2)n	+	c2((1-√5)/2)n		

The	par.cular	solu.on	–	use	ini.al	condi.ons	F(0)	=	0,	F(1)	=	1	to	obtain	c1	and	c2	
aWer	solving	a	system	of	two	linear	equa.ons	in	two	unknowns.		
	

						F(n)	=	(φn	–	φ1
n)/√5		

	

	where	φ	=	(1+√5)/2)	≈	1.618	(golden	ra;o),			
													φ1	=	(1-√5)/2)	≈	-0.618.		

Computing Fibonacci numbers 
Definition-based recursive algorithm 

Recurrence	for	1me	complexity:	
	



2/5/17	

7	

Computing Fibonacci numbers (cont.) 
Nonrecursive brute-force algorithm 
 
 
 

Summa1on	for	1me	complexity:	
	

Computing Fibonacci numbers (cont.) 

Explicit formula algorithm based on  
F(n) = φn / √5  rounded to the nearest integer 

 
 
 
 
Logarithmic algorithm based on formula: 

F(n-1)    F(n) 
	
F(n)   F(n+1) 

0   1 
1    1 

=	
n 

with	an	efficient	way	of	compu1ng	matrix	powers	



2/5/17	

8	

Homework 
Exercises  
q  2.4: 1, 3, 4, 8, 9, 12 
q  2.5: 3, 7, 8 
 
Reading:  
q  Sections 2.4 and 2.5 
q  pp. 479–485 in Appendix B  
 
Next: Chapter 3 
 

 


