CSC 8301- Design and Analysis of Algorithms

Lecture 3

Techniques for efficiency analysis of recursive algorithms

Time efficiency of recursive algorithms General Plan

- □ Decide on parameter *n* indicating *input size*
- □ Identify algorithm's basic operation
- □ Determine *worst*, *average*, and *best* case for inputs of size *n* to analyze them separately if needed
- \Box Set up a *recurrence relation* and *initial condition(s)* for C(n) the number of times the basic operation will be executed for an input of size n
- □ Solve the recurrence to obtain a closed form or estimate the order of growth of the solution (see Appendix B)

Example 1: Recursive evaluation of *n*!

```
Definition: n! = 1 * 2 * ... *(n-1) * n \text{ for } n \ge 1 \text{ and } 0! = 1
```

Recursive definition of n!: F(n) = F(n-1) * n for $n \ge 1$ and F(0) = 1

ALGORITHM F(n)

//Computes n! recursively //Input: A nonnegative integer n//Output: The value of n!if n = 0 return 1 else return F(n - 1) * n

Input size:

Basic operation:

Recurrence for time complexity:

Solving the recurrence (backward substitution)

$$M(n) = M(n-1) + 1$$

$$M(0) = 0$$

Example 2: Tower of Hanoi Puzzle

Goal: move all *n* disks to peg 3

- can use peg 2 in the process

Restriction:

- cannot place a disk on top of a smaller one

Recursive solution:

Recurrence for the number of moves:

Solving the recurrence (backward substitution)

$$M(n) = 2 M(n-1) + 1$$

$$M(1) = 1$$

Example 3: Counting binary digits

ALGORITHM BinRec(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation

if n = 1 return 1

else return $BinRec(\lfloor n/2 \rfloor) + 1$

Recurrence for time complexity:

Fibonacci numbers

The Fibonacci numbers:

Fibonacci recurrence:

$$F(n) = F(n-1) + F(n-2)$$

$$F(0) = 0$$

$$F(1) = 1$$

2nd order linear homogeneous recurrence relation with constant coefficients (2nd order LHRRCC)

Solving 2nd order LHRRCC

<u>Definition</u> 2nd order linear homogeneous recurrence with constant coefficients is a recurrence of the form:

$$ax_n + bx_{n-1} + cx_{n-2} = 0$$

where a, b, c are real numbers (called the coefficients), $a \neq 0$.

Unless b = c = 0, this equation has infinitely many solutions called the *general solution*. A formula expressing this solution depends on the root of the quadratic equation called the *characteristic equation* for the above recurrence:

$$ar^2 + br + c = 0$$

<u>Theorem</u> If the characteristic equation has two real roots r_1 , r_2 then $x_n = c_1 r_1^n + c_2 r_2^n$ (c_1 , c_2 derived from initial conditions)

If the characteristic equation has one root r, then $x_n = c_1 r^n + c_2 n r^n$

LHRRCC Example

Find the general solution for

$$x(n) = 5 x(n-1) - 6x(n-2)$$

$$x(0) = 9$$

$$x(1) = 20$$

Application to the Fibonacci numbers

The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

The Fibonacci recurrence: F(n) - F(n-1) - F(n-2) = 0

The characteristic equation: $r^2 - r - 1 = 0$

The roots: $r_{1,2} = (1 \pm \sqrt{5})/2$

The general solution: $F(n) = c_1((1+\sqrt{5})/2)^n + c_2((1-\sqrt{5})/2)^n$

The particular solution – use initial conditions F(0) = 0, F(1) = 1 to obtain c_1 and c_2 after solving a system of two linear equations in two unknowns.

$$F(n) = (\Phi^n - \Phi_1^n)/\sqrt{5}$$

where $\Phi = (1+\sqrt{5})/2 \approx 1.618$ (golden ratio),
 $\Phi_1 = (1-\sqrt{5})/2 \approx -0.618$.

Computing Fibonacci numbers

Definition-based recursive algorithm

ALGORITHM F(n)

//Computes the nth Fibonacci number recursively by using its definition //Input: A nonnegative integer n //Output: The nth Fibonacci number if $n \le 1$ return n else return F(n-1) + F(n-2)

Recurrence for time complexity:

Computing Fibonacci numbers (cont.)

Nonrecursive brute-force algorithm

ALGORITHM Fib(n)//Computes the nth Fibonacci number iteratively by using its definition
//Input: A nonnegative integer n//Output: The nth Fibonacci number $F[0] \leftarrow 0; \ F[1] \leftarrow 1$ for $i \leftarrow 2$ to n do $F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]

Summation for time complexity:

Computing Fibonacci numbers (cont.)

Explicit formula algorithm based on

 $F(n) = \varphi^n / \sqrt{5}$ rounded to the nearest integer

Logarithmic algorithm based on formula:

with an efficient way of computing matrix powers

Homework

Exercises

2.4: 1, 3, 4, 8, 9, 12

2.5: 3, 7, 8

Reading:

□ Sections 2.4 and 2.5

□ pp. 479–485 in Appendix B

Next: Chapter 3