
1/25/17	

1	

CSC 8301- Design and Analysis of Algorithms

Lecture 2

Techniques for efficiency analysis of
 nonrecursive algorithms

Analyzing time efficiency of an algorithm

Time efficiency is analyzed by determining the number of
repetitions of the basic operation as a function of input size.

Basic operation: the operation that contributes most towards
the running time of the algorithm.

 T(n) ≈ copC(n)
running time execution time

for basic operation
Number of times
basic operation is
executed

input size

 Order of growth of C(n) is of primary interest.

1/25/17	

2	

Two approaches to efficiency

q  Theoretical – use mathematical tools such as
–  summations (mostly for nonrecursive algorithms)
–  recurrence relations (mostly for recursive algorithms)

q  Empirical – select an input sample (e.g., randomly) and
–  measure running time in some physical unit (milliseconds)
 or
–  count actual number of basic operation executions by

inserting counter(s) in appropriate places of the code

Math analysis of nonrecursive algorithms

General Plan

q  Decide on parameter n indicating input size

q  Identify algorithm’s basic operation

q  Determine worst, average, and best cases for input of size n

q  Set up summation for C(n), the basic operation count,
reflecting algorithm’s loop structure

q  Simplify summation using standard formulas
 (see Appendix A)

1/25/17	

3	

Useful summation formulas

Σl≤i≤u1 =
In particular, Σ1≤i≤n 1 =

Σ1≤i≤n i =

Σ1≤i≤n i2 =

Σ0≤i≤n ai =
In particular, Σ0≤i≤n 2i =

Σ1≤i≤n 1/i =

Σ1≤i≤n lg i =

Useful summation rules

Σ(ai ± bi) =

Σcai =

Split: Σl≤i≤uai =

Σl≤i≤u (ai - ai-1) =

Approximation by definite integrals
∫
u
 f(x)dx ≤ Σl≤i≤u f(i) ≤ ∫u+l

 f(x)dx for nondecreasing f(x)

l-1

l

∫
u+1f(x)dx ≤ Σl≤i≤u f(i) ≤ ∫u

 f(x)dx for nonincreasing f(x)

l

l-1

1/25/17	

4	

Example 1: Maximum element

•  Input	size	
•  Basic	opera0on	
•  Worst,	average,	and	best	cases	
•  Summa0on	for	C(n)								

Example 2: Element uniqueness problem

•  Input	size	
•  Basic	opera0on	
•  Best	case	
•  Worst	case	–	summa0on	for	C(n)								

1/25/17	

5	

Example 3: Matrix multiplication

_	

•  Input	size	
•  Basic	opera0on	
•  Worst,	average,	and	best	cases	
•  Summa0on	for	C(n)								

Example 4: Gaussian elimination
Algorithm GaussianElimination(A[0..n-1,0..n])
//Implements Gaussian elimination of an n-by-(n+1) matrix A
for i ← 0 to n - 2 do
 for j ← i + 1 to n - 1 do
 for k ← n downto i do
 A[j,k] ← A[j,k] - A[i,k] * A[j,i] / A[i,i]

Find the efficiency class and a constant factor improvement.

1/25/17	

6	

Example 5: Counting binary digits

It cannot be investigated the way the previous examples are.

1/25/17	

7	

Homework

Exercises 2.3: 1–12 (you may skip 3 and 7)

Reading: Sections 2.3, 2.6 and 2.7
Watch the “Sorting Out Sorting Video” at
http://www.youtube.com/watch?v=SJwEwA5gOkM
(note that today’s computers are several orders of magnitude faster

than those in the film; hence one needs much larger files to see a
difference in the speed of different sorting algorithms)

Next: Sections 2.4, 2.5, and Appendix B

