2/5/17

CSC 8301- Design and Analysis of Algorithms

Lecture 2

Techniques for efficiency analysis of

nonrecursive algorithms

Analyzing time efficiency of an algorithm

Time efficiency is analyzed by determining the number of
repetitions of the basic operation as a function of input size.

Basic operation: the operation that contributes most towards
the running time of the algorithm.

mput size

T (n) »C(n \
running time execut1on time umber of times

for basic operation ~ Dasic operation is
executed

Order of growth of C(n) is of primary interest.




O

2/5/17

Two approaches to efficiency

o Theoretical — use mathematical tools such as
— summations (mostly for nonrecursive algorithms)

— recurrence relations (mostly for recursive algorithms)

o Empirical — select an input sample (e.g., randomly) and
— measure running time in some physical unit (milliseconds)
or

— count actual number of basic operation executions by
inserting counter(s) in appropriate places of the code

Math analysis of nonrecursive algorithms
General Plan

Decide on parameter n indicating input size
Identify algorithm’ s basic operation
Determine worst, average, and best cases for input of size n

Set up summation for C(n), the basic operation count,
reflecting algorithm’ s loop structure

Simplify summation using standard formulas
(see Appendix A)



2/5/17

Useful summation formulas

Sl =l A=y -+ 1
In particular, X 1=n-1+1 =n € O(n)

l=<i=zn

leisn l = 1+2+ tn = n(ﬂ+1)/2 ~ }12/2 (= @(1’12)
3 2= 124224 4n? = n(nt+1)(2n+1)/6 = n*/3 € O(n?)
S, a =a+al+.. 4 an = (a" - Dl(a—1) E O(a")

In particular, X,,_,_ 2/ =20+21+  +27 =271 .1 € O(2")

O<i<n

) [i=1/1+1/2+...+l/n=Inn + 0.5772... € O(log n)

l=<i=n 1

leisn lg i=lg 1+1g 2+.. +lg ne @(nlog n)

Useful summation rules
2(a;xb;,)=2a;+2 b,
2ca; = cZaq
i = L@t 2 a

m+1<isu™*i

2@ -a )= a,-a,

Approximation by definite integrals
j; i1 fx)dx < 2__ f(D) < f; i fix)dx for nondecreasing f(x)

j;' +1ﬂx)dx < 2 0 < jl“ ] fix)dx for nonincreasing f{x)



2/5/17

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if A[i] > maxval

maxval < Ali]

return maxval

Input size

Basic operation

Worst, average, and best cases
Summation for C(n)

Example 2: Element uniqueness problem

ALGORITHM  UnigueElements(A[0..n —1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
I and “false” otherwise
fori <~ Oton —2do

forj«<—i+1ton—1do

if A[i]= A[/] return false

return true

Input size

Basic operation

Best case

Worst case — summation for C(n)



Example 3: Matrix multiplication

ALGORITHM  MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0.n — 1, 0.n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//Input: Two n-by-n matrices A and B
//Output: Matrix C = AB
fori < Oton —1do
forj «<0ton—1do
Cli, j]< 0.0
fork < Oton —1do
C[i, j] < Cli, j1+ Ali. k] = B[k, j]
return C

Input size

Basic operation

Worst, average, and best cases
Summation for C(n)

Example 4: Gaussian elimination

Algorithm GaussianElimination(A[0..n-1,0..n])
//Tmplements Gaussian elimination of an n-by-(n+1) matrix 4

fori< Oton-2do
forj<— i+ 1ton-1do
for k < n downto i do

Alj k] < Alj.k] - Alik] * A[)j,i] ] A[i,i]

Find the efficiency class and a constant factor improvement.

2/5/17



Example 5: Counting binary digits

ALGORITHM Binary(n)
/[Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation
count <1
while > 1 do
count < count + 1
n<|n/2|
return count

It cannot be investigated the way the previous examples are.

Homework

Exercises 2.3: 1-12 (you may skip 3 and 7)

Reading: Sections 2.3, 2.6 and 2.7

Watch the “Sorting Out Sorting Video” at
http://www.youtube.com/watch?v=SJwEwAS5g0kM

(note that today’ s computers are several orders of magnitude faster
than those in the film; hence one needs much larger files to see a
difference in the speed of different sorting algorithms)

Next: Sections 2.4, 2.5, and Appendix B

2/5/17



