CSC 8301- Design and Analysis of Algorithms

Lecture 2

Techniques for efficiency analysis of nonrecursive algorithms

Analyzing time efficiency of an algorithm

Time efficiency is analyzed by determining the number of repetitions of the basic operation as a function of input size.

Basic operation: the operation that contributes most towards the running time of the algorithm.

Order of growth of $C(n)$ is of primary interest.

Two approaches to efficiency

- Theoretical - use mathematical tools such as
- summations (mostly for nonrecursive algorithms)
- recurrence relations (mostly for recursive algorithms)
- Empirical - select an input sample (e.g., randomly) and
- measure running time in some physical unit (milliseconds) or
- count actual number of basic operation executions by inserting counter(s) in appropriate places of the code

Math analysis of nonrecursive algorithms General Plan

- Decide on parameter n indicating input size
- Identify algorithm' s basic operation
- Determine worst, average, and best cases for input of size n
- Set up summation for $C(n)$, the basic operation count, reflecting algorithm's loop structure
- Simplify summation using standard formulas (see Appendix A)

Useful summation formulas

$$
\begin{aligned}
& \Sigma_{l \leq i \leq u} 1=1+1+\ldots+1=u-l+1 \\
& \text { In particular, } \Sigma_{1 \leq i \leq n} 1=n-1+1=n \in \Theta(n) \\
& \Sigma_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right) \\
& \Sigma_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right) \\
& \Sigma_{0 \leq i \leq n} a^{i}=a^{0}+a^{1}+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1) \in \Theta\left(a^{n}\right) \\
& \text { In particular, } \Sigma_{0 \leq i \leq n} 2^{i}=2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1 \in \Theta\left(2^{n}\right) \\
& \Sigma_{1 \leq i \leq n} 1 / i=1 / 1+1 / 2+\ldots+1 / n \approx \ln n+0.5772 \ldots \in \Theta(\log n) \\
& \Sigma_{1 \leq i \leq n} \lg i=\lg 1+\lg 2+\ldots+\lg n \in \Theta(n \log n)
\end{aligned}
$$

Useful summation rules

$$
\begin{aligned}
& \Sigma\left(a_{i} \pm b_{i}\right)=\Sigma a_{i} \pm \sum b_{i} \\
& \Sigma \mathrm{c} a_{i}=\mathrm{c} \Sigma a_{i} \\
& \Sigma_{l \leq i \leq u} a_{i}=\Sigma_{l \leq i \leq m} a_{i}+\Sigma_{m+1 \leq i \leq u} a_{i} \\
& \Sigma_{l \leq i \leq u}\left(a_{i}-a_{i-1}\right)=a_{u}-a_{l-1}
\end{aligned}
$$

Approximation by definite integrals
$\int_{l-1}^{u} f(x) \mathrm{d} x \leq \Sigma_{l \leq i \leq u} f(i) \leq \int_{l}^{u+1} f(x) \mathrm{d} x$ for nondecreasing $f(x)$
$\int_{l}^{u+1} f(x) \mathrm{d} x \leq \Sigma_{l \leq i \leq u} f(i) \leq \int_{l-1}^{u} f(x) \mathrm{d} x$ for nonincreasing $f(x)$

Example 1: Maximum element

```
ALGORITHM MaxElement(A[0..n-1])
    //Determines the value of the largest element in a given array
    //Input: An array }A[0..n-1] of real numbers
    //Output: The value of the largest element in A
    maxval }\leftarrowA[0
    for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
        if }A[i]>\mathrm{ maxval
        maxval }\leftarrowA[i
    return maxval
```

- Input size
- Basic operation
- Worst, average, and best cases
- Summation for $C(n)$

Example 2: Element uniqueness problem

```
ALGORITHM UniqueElements(A[0..n-1])
    //Determines whether all the elements in a given array are distinct
    //Input: An array A[0..n - 1]
    //Output: Returns "true" if all the elements in A are distinct
    // and "false" otherwise
    for }i\leftarrow0\mathrm{ to }n-2\mathrm{ do
        for }j\leftarrowi+1\mathrm{ to }n-1\mathrm{ do
            if }A[i]=A[j]\mathrm{ return false
    return true
- Input size
- Basic operation
- Best case
- Worst case - summation for C(n)
```


Example 3: Matrix multiplication

```
ALGORITHM MatrixMultiplication(A[0..n - 1, 0..n-1],B[0..n-1,0..n - 1])
    //Multiplies two n-by-n matrices by the definition-based algorithm
    //Input: Two n-by-n matrices A and B
    //Output: Matrix C=AB
    for }i\leftarrow0\mathrm{ to }n-1\mathrm{ do
        for j}\leftarrow0\mathrm{ to }n-1\mathrm{ do
            C[i,j]}\leftarrow0.
            for }k\leftarrow0\mathrm{ to }n-1\mathrm{ do
            C[i,j]\leftarrowC[i,j]+A[i,k]*B[k,j]
    return C
- Input size
- Basic operation
- Worst, average, and best cases
- Summation for \(C(n)\)
```


Example 4: Gaussian elimination

Algorithm GaussianElimination(A[0..n-1,0..n])
//Implements Gaussian elimination of an n-by- $(n+1)$ matrix A for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
for $k \leftarrow n$ downto i do

$$
A[j, k] \leftarrow A[j, k]-A[i, k] * A[j, i] / A[i, i]
$$

Find the efficiency class and a constant factor improvement.

Example 5: Counting binary digits

```
ALGORITHM Binary(n)
    //Input: A positive decimal integer n
    //Output: The number of binary digits in n's binary representation
    count }\leftarrow
    while }n>1\mathrm{ do
        count }\leftarrow\mathrm{ count +1
        n\leftarrow\lfloorn/2\rfloor
    return count
```

It cannot be investigated the way the previous examples are.

Homework

Exercises 2.3: 1-12 (you may skip 3 and 7)

Reading: Sections 2.3, 2.6 and 2.7
Watch the "Sorting Out Sorting Video" at
http://www.youtube.com/watch?v=SJwEwA5gOkM
(note that today's computers are several orders of magnitude faster than those in the film; hence one needs much larger files to see a difference in the speed of different sorting algorithms)

Next: Sections 2.4, 2.5, and Appendix B

