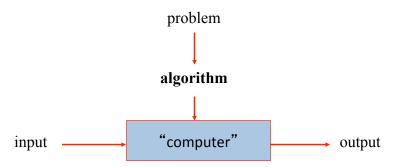
CSC 8301- Design and Analysis of Algorithms

Lecture 1 Introduction

Analysis framework and asymptotic notations

What is an algorithm?

An <u>algorithm</u> is a *finite* sequence of *unambiguous* instructions for solving a problem, i.e., for obtaining a required output for any legitimate input.



Euclid's algorithm

Problem: Find gcd(m,n), the greatest common divisor of two nonnegative, not both zero integers m and n

Euclid's algorithm is based on repeated application of equality

$$gcd(m, n) = gcd(n, m \mod n)$$

$$gcd(24,60) = gcd(60,24)$$

Ex.: $gcd(60,24) = gcd(24,12) = gcd(12,0) = (12)$

while $n \neq 0$ do

 $r \leftarrow m \bmod n$

 $m \leftarrow n$

 $n \leftarrow r$

return m

timite: 2nd argument du creases Unambiguous: well-odifined sequence of steps EFFICIENT!

Why study algorithms?

- □ Theoretical importance
 - The cornerstone of computer science
- Practical importance
 - a practitioner's toolkit of known algorithms
 - frameworks for designing and analyzing algorithms for new problems

Two main issues related to algorithms

- □ How to design algorithms
- □ How to analyze algorithm efficiency

Major Algorithm Design Techniques/Strategies

- □ Brute force □ Greedy approach
- □ Decrease and conquer □ Dynamic programming
- □ Divide and conquer □ Iterative improvement
- □ Transform and conquer □ Backtracking
- □ Space-time tradeoff
- Branch and Bound

Analysis of Algorithms

- □ How good is the algorithm?
 - correctness (accuracy for approximation alg.)
 - time efficiency
 - space efficiency
 - optimality
- □ Approaches:
 - empirical (experimental) analysis
 - theoretical (mathematical) analysis

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of times the algorithm's <u>basic operation</u> is executed as a function of <u>input size</u>

- □ <u>Input size</u>: number of input items or, if matters, their size (1)
- □ <u>Basic operation</u>: the operation contributing the most toward the running time of the algorithm

Cop = cost of the basic operation
$$C(n) = \# \text{ throwes the basic operation executes}$$

$$Total hime$$

$$T(n) = Cop * C(n)$$

Example: Searching for a key in a list

```
ALGORITHM SequentialSearch(A[0..n-1], K)

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n-1] and a search key K

//Output: The index of the first element of A that matches K

// or -1 if there are no matching elements

i \leftarrow 0

while i < n and A[i] \neq K do

i \leftarrow i + 1

if i < n return i

else return -1

Input Size?

Dasic Operation?
```

Example: Multiplying two nxn matrices

```
ALGORITHM MatrixMultiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

//Multiplies two n-by-n matrices by the definition-based algorithm

//Input: Two n-by-n matrices A and B

//Output: Matrix C = AB

for i \leftarrow 0 to n-1 do

C[i, j] \leftarrow 0.0

for k \leftarrow 0 to n-1 do

C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]

return C

Input Size?

Basic Operation?

Multiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1]), B[0..n-1, 0..n-1])
```

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

- \Box Worst case: $C_{worst}(n)$ maximum over inputs of size n
- □ Best case: $C_{best}(n)$ minimum over inputs of size n
- \Box Average case: $C_{avg}(n)$ "average" over inputs of size n
 - Number of times the basic operation is executed on typical input
 - NOT the average of worst and best case
 - Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Example: Searching for a key in a list

```
ALGORITHM SequentialSearch(A[0..n-1], K)

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n-1] and a search key K

//Output: The index of the first element of A that matches K

// or -1 if there are no matching elements

i \leftarrow 0

while i < n and A[i] \neq K do

i \leftarrow i + 1

if i < n return i

else return -1

Worst Case? T(M) = M + 1

Best Case? T(M) = M + 1

Average Case? (assuming probability of successful search is p and
```

probability of the first match in each position *i* is same)

Average-case approach

- □ Divide all instances of size *n* into several classes, so that in each class the algorithm would take about the same time
- \square Probability P(*I*) of input *I*:
 - how likely input *I* is
- \square Random variable C(I):
 - number of steps taken by algorithm on input I
- Average running time is

$$\Sigma_I C(I) * P(I)$$

Average Case for Sequential Search (1)

Case 1: The key *K* is in the list, equally likely to be in any position

P(K is 1st position) = 1/n (Use 1+2+3+...+Nz
$$\frac{n(n+1)}{2}$$
)

P(K in 2nd position) = 1/n (Use 1+2+3+...+Nz $\frac{n(n+1)}{2}$)

P(K in 2nd position) = 1/n (I \le i \le n)

T(K in 1st position) = 1/n (usuparison)

T(K in 2nd position) = 2

T(n) = \frac{1}{n} \text{ is } \frac{1}{n} \text{ so } 2 + \frac{1}{n} \text{ so } 3 + \dots \text{ + \frac{1}{n} \text{ so } n = \frac{n+1}{2}}

Average Case for Sequential Search (2)

Case 2: The probability that the key *K* is in the list is $p \le 1$

P(key in the list) = p

P(key not in the list) = 1-p

T (key not in the list) = n+1

T (key in the list) =
$$\frac{n+1}{2}$$
 (see prev. slide)

T(n) = p. $\frac{n+1}{2}$ + (1-p) (n+1) = $\frac{n+1}{2}$

= $\frac{(n+1)(1-p/2)}{2}$

Example: Multiplying two nxn matrices

```
ALGORITHM Matrix Multiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

//Multiplies two n-by-n matrices by the definition-based algorithm

//Input: Two n-by-n matrices A and B

//Output: Matrix C = AB

for i \leftarrow 0 to n-1 do

C[i, j] \leftarrow 0.0

for k \leftarrow 0 to n-1 do

C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]

return C

Worst Case?

Best Case?

Average Case?
```

Types of formulas for basic operation count

Exact formula

e.g.,
$$C(n) = n(n-1)/2$$

□ Formula indicating *order of growth* with specific multiplicative constant

e.g.,
$$C(n) \approx 0.5 \ n^2$$

□ Formula indicating *order of growth* with unknown multiplicative constant

e.g.,
$$C(n) \approx cn^2$$

Order of growth

Most important: Order of growth within a constant multiple as $n \to \infty$

Example:

$$- C(n) = cn^2$$

- Suppose we double the input size. How much longer will the

algorithm take? Compart
$$C(2n)$$
 with $C(n)$

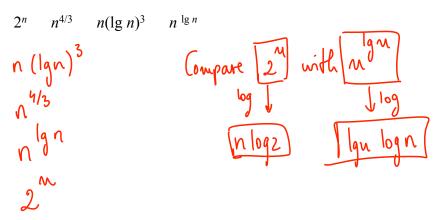
$$\frac{C(2n)}{C(n)} = \frac{2 \cdot (2n)^2}{2 \cdot (2n)^2} = \frac{4n^2}{n^2} = 4$$

Values of several functions important for analysis of algorithms

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	<i>n</i> !
10	3.3	10^{1}	3.3·10 ¹	10^{2}	10^{3}	10^{3}	3.6·10 ⁶
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	9.3·10 ¹⁵⁷
10^{3}	10	10^{3}	1.0 · 104	10^{6}	109		
10^{4}	13	10^{4}	1.3·10 ⁵	108	1012		
10 ⁵	17	10 ⁵	$1.7 \cdot 10^6$	1010	1015		
106	20	106	$2.0 \cdot 10^{7}$	1012	10^{18}		

Example

Order these functions according to their order of growth (from lowest to highest):



Main Points of the Analysis Framework

- □ Both time and space efficiencies are measured as functions of the algorithm's input size.
- □ Time efficiency is measured by counting the number of times the algorithm's basic operation is executed.
- □ Space efficiency is measured by counting the number of extra memory units (beyond input and output) used by the algorithm.
- □ For some algorithms, one should distinguish among the worst, best and average case efficiencies.
- □ The main concern is the *order of growth* of the algorithm's running time and extra memory units consumed as input size goes to infinity.

Asymptotic order of growth

A way to classify functions according to their order of growth

- practical way to deal with complexity functions
- ignores constant factors and small input sizes
- □ Big-O
 - O(g(n)): class of functions f(n) that grow <u>no faster</u> than g(n)
- □ Big-Theta
 - $-\Theta(g(n))$: class of functions f(n) that grow <u>at same rate</u> as g(n)
- □ Big-Omega
 - $\Omega(g(n))$: class of functions f(n) that grow <u>at least as fast</u> as g(n)

Big-O (asymptotic \leq)

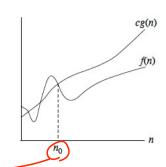
Definition: f(n) is in O(g(n)) if order of growth of $f(n) \le$ order of growth of g(n) (within constant multiple),

i.e., there exist positive constant c and non-negative integer n_0 such that

$$f(n) \le c g(n)$$
 for every $n \ge n_0$

Examples:

- \square 10 n^2 is $O(n^2)$



□ $10n \text{ is } O(n^2)$ True □ 5n+20 is O(n) $\frac{5m+20 \leq 10 \text{ M}}{\text{for } n^7, 4 \text{ F}}$

Ω (Omega, asymptotic \geq)

Definition: f(n) is in $\Omega(g(n))$ if there exist positive constant c and non-negative integer n_0 such that

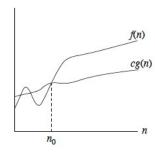
$$f(n) \ge c g(n)$$
 for every $n \ge n_0$

These are all $\Omega(n^2)$:

- \square n^2
- $n^2 + 100n$
- $\Box 1000n^2 1000 n$
- \square n^3

These are not:

- $n^{1.999}$
- \Box n
- \Box lg n

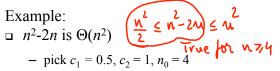


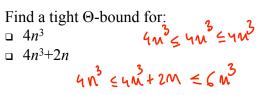
Θ (Theta, asymptotic =)

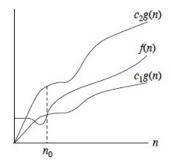
Definition: f(n) is in $\Theta(g(n))$ if there exist positive constants c_1 , c_2 and non-negative integer n_0 such that

$$c_1 g(n) \le f(n) \le c_2 g(n)$$
 for every $n \ge n_0$

Example:
$$n^2-2n \text{ is } \Theta(n^2)$$





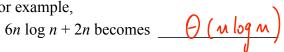


Establishing order of growth

High level idea: ignore:

- constant factors (too system-dependent)
- low-order terms (irrelevant for large inputs)

For example,



Establishing order of growth using limits

$$\lim_{n\to\infty} f(n)/g(n) = \begin{cases} 0 \text{ order of growth of } f(n) < \text{ order of growth of } g(n) \\ c > 0 \text{ order of growth of } f(n) = \text{ order of growth of } g(n) \\ \infty \text{ order of growth of } f(n) > \text{ order of growth of } g(n) \end{cases}$$

Examples:

• 10n vs.
$$n^2$$
 $\lim_{N\to\infty} \frac{10n}{n^2} = \lim_{N\to\infty} \frac{1}{n} \to \emptyset$
• $n(n+1)/2$ vs. n^2 $\lim_{N\to\infty} \frac{n(n+1)}{2n^2} = \lim_{N\to\infty} \frac{1}{2} + \lim_{N\to\infty} \frac{1}{2}$
• $\lim_{N\to\infty} \frac{1}{2n^2} = \lim_{N\to\infty} \frac{1}{2} + \lim_{N\to\infty} \frac{1}{2}$

L' Hôpital's Rule and Stirling's Formula

L' Hôpital's rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$

Example: $\log(n)$ vs. \sqrt{n}

lim
$$\frac{\log n}{\sqrt{n}} = \lim_{N \to \infty} \frac{1}{\frac{1}{2} n^{-\frac{1}{2}}} = \lim_{N \to \infty} \frac{2 \sqrt{n}}{\sqrt{n}} = \lim_{N \to \infty} \frac{2}{\sqrt{n}} \rightarrow \emptyset$$
Stirling's formula: $n! \approx (2\pi n)^{1/2} (n/e)^n$

Orders of growth of some important functions

- □ All logarithmic functions $\log_a n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base a>1 is.
- □ All polynomials of the same degree k belong to the same class: $a_k n^k + a_{k-1} n^{k-1} + ... + a_0 \in \Theta(n^k)$.
- \Box Exponential functions a^n have different orders of growth for different a.
- \Box order $\log n < \text{order } n^{\alpha} \ (\alpha > 0) < \text{order } a^n < \text{order } n! < \text{order } n^n$

Some properties of asymptotic order of growth

- $\ \ \square \ f(n) \in \mathrm{O}(f(n))$
- $\ \ \square \ f(n) \in \mathrm{O}(g(n)) \ \mathrm{iff} \ g(n) \in \Omega(f(n))$
- $\ \, \square \ \, \text{If} \, f(n) \in \mathrm{O}(g\,(n)) \,\, \text{and} \,\, g(n) \in \mathrm{O}(h(n)) \,\, , \, \text{then} \,\, f(n) \in \mathrm{O}(h(n))$

Note similarity with $a \le b$

□ If
$$f_1(n) \in O(g_1(n))$$
 and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$

Homework

- Exercises
 - 1.1: 6, 9a, 12
 - 1.2: 1, 2
 - 1.3: 4, 5
 - 2.1: 3, 5a, 8, 9
 - 2.2: 3, 5, 9, 12
- □ Reading:
 - Preface and Chapter 1 (Sections 1.1-1.4)Sections 2.1 and 2.2