1/18/17

CSC 8301- Design and Analysis of Algorithms

Lecture 1

Introduction

Analysis framework and asymptotic notations

What is an algorithm?

An algorithm is a finite sequence of unambiguous
instructions for solving a problem, 1.e., for obtaining a
required output for any legitimate input.

problem

|

algorithm

|

imput —— “computer”

output

1/18/17

Knuth’s 5§ important features of an algorithm

o finiteness — terminates after a finite number of steps
o definiteness — must be precisely defined

o has 0 or more inputs from predefined sets of objects
o has 1 or more outputs

o effectiveness — each operation can be executed exactly in a finite
length of time using pencil and paper

(Donald E. Knuth, “The Art of Computer Programming”, vol.1)

Euclid’ s algorithm

Problem: Find gcd(m,n), the greatest common divisor of two
nonnegative, not both zero integers m and n

Euclid’s algorithm is based on repeated application of equality
gcd(m, n) = gcd(n, m mod n)

Ex.: gcd(60,24) =

while n # 0 do
r<«— mmod n
m«—n
n<—r

return m

1/18/17

Why study algorithms?

o Theoretical importance
— The cornerstone of computer science

o Practical importance
— a practitioner’s toolkit of known algorithms

— frameworks for designing and analyzing algorithms
for new problems

Two main issues related to algorithms

o How to design algorithms

o How to analyze algorithm efficiency

Major Algorithm Design Techniques/Strategies

o Brute force o Greedy approach
o Decrease and conquer o Dynamic programming
a Divide and conquer o Iterative improvement
o Transform and conquer o Backtracking
o Space-time tradeoff
o Branch and Bound
Analysis of Algorithms

o How good is the algorithm?

— correctness (accuracy for approximation alg.)

— time efficiency
— space efficiency
— optimality

a Approaches:

— empirical (experimental) analysis

— theoretical (mathematical) analysis

1/18/17

1/18/17

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of
times the algorithm’s basic operation is executed as a function
of input size

o Input size: number of input items or, if matters, their size

o Basic operation: the operation contributing the most toward the
running time of the algorithm

input size
\
I(n) = c,,C(n)
running time execution{me number of basic

for basic operation operation’s executions

Example: Searching for a Key in a List

ALGORITHM SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
//Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
I or —1 if there are no matching elements
i <0
while i < n and A[i] # K do
i <i+1
if i <nreturn
else return —1

Input Size?
Basic Operation?

1/18/17

Example: Multiplying two nxn Matrices

ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0..n — 1. 0.n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//Tnput: Two n-by-n matrices A and B
//Output: Matrix C = AB
fori <~ 0Oton—1do
forj <0ton—1do
Cli. j]< 0.0
fork < Oton 1do
Cli, j] < C[i, j1+ Al k] * B[k, J]
return C

Input Size?
Basic Operation?

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:
o Worst case: C,,, () — maximum over inputs of size n
o Best case: Chpest(7) — minimum over inputs of size n

o Average case: C, (1) — “average” over inputs of size n
— Number of times the basic operation is executed on typical input
— NOT the average of worst and best case

— Expected number of basic operations considered as a random variable under
some assumption about the probability distribution of all possible inputs

Average-case approach

o Random variable C(/):
— number of steps taken by algorithm on input /

o Probability P(Z) of input /:
— how likely input I is

o Average running time is

=, C(1)*P(])

Example: Searching for a Key in a List

ALGORITHM SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
//Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
I or —1 if there are no matching elements
i <0
while i < n and A[i] # K do
i «—i+1
ifi <nreturni
else return —1

Worst Case?
Best Case?

Average Case? (assuming probability of successful search is p and
probability of the first match in each position i is same)

1/18/17

1/18/17

Average Case for Sequential Search (1)

Case 1: The key K is in the list, equally likely to be in any position

Average Case for Sequential Search (2)

Case 2: The probability that the key K is in the listis p < 1

1/18/17

Example: Multiplying two nxn Matrices

ALGORITHM MatrixMultiplication(A[0.n — 1, 0..n — 1], B[0..n — 1. 0.n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//Tnput: Two n-by-n matrices A and B
//Output: Matrix C = AB
fori < Oton—1do
forj <0ton—1do
Cli, j]1<0.0
fork < Oton 1do
Cli, j] < Cli. j1+ A[i, k] = B[k, j]

return C

Worst Case?
Best Case?
Average Case?

Types of formulas for basic operation count

Exact formula
e.g., C(n) =n(n-1)/2

Formula indicating order of growth with specific multiplicative
constant

e.g., C(n)=0.5n?

Formula indicating order of growth with unknown multiplicative
constant

e.g., C(n) = cn?

Order of growth

Most important: Order of growth within a constant

multiple as n —o©

Example:
— C(n) =3n(n-1)

— Suppose we double the input size. How much longer will the
algorithm take?

Values of several functions
important for analysis of algorithms

n |log;n n nlog,n n? n? 2n n!

10 | 3.3 1ot 3.3-100 102 103 103 3.6-108
102 | 6.6 102 6.6-10> 10* 10 1.3-10° 9.3-10"7

10° | 10 10> 1.0-10* 10® 10°
104 | 13 10+ 1.3-10° 108 1012
105 | 17 105 1.7-106 100 10"

106 | 20 106 2.0-107 10 10'®

1/18/17

10

1/18/17

Example

a Order these functions according to their order of growth (from
lowest to highest):

on n4/3 n(lg 7’1)3 nlgn

Main Points of the Analysis Framework

Both time and space efficiencies are measured as functions of the
algorithm’s input size.

Time efficiency is measured by counting the number of times the
algorithm’s basic operation is executed.

Space efficiency is measured by counting the number of extra
memory units (beyond input and output) used by the algorithm.

For some algorithms, one should distinguish among the worst, best
and average case efficiencies.

The main concern is the order of growth of the algorithm’s running
time and extra memory units consumed as input size goes to infinity.

11

1/18/17

Asymptotic order of growth

A way to classify functions according to their order of growth
- practical way to deal with complexity functions

- ignores constant factors and small input sizes

o Big-O
— O(g(n)): class of functions f{n) that grow no faster than g(n)

o Big-Theta
— O (g(n)): class of functions f{n) that grow at same rate as g(n)

o Big-Omega
— Q(g(n)): class of functions f{n) that grow at least as fast as g(n)

Big-O (asymptotic <)

Definition: f{n) is in O(g(n)) if order of growth of f{(n) < order of
growth of g(n) (within constant multiple),
i.e., there exist positive constant ¢ and non-negative integer n, such
that

f(n) < c g(n) for every n > n,

Examples: cg()
a 1072 is O(n?)
B

a 10n is O(n?)

a 51120 is O(n)

12

1/18/17

Q (Omega, asymptotic >)

Definition: f{n) is in Q (g(n)) if there exist positive constant ¢ and
non-negative integer n, such that

f(n) > c g(n) for every n > n,,

These are all Q(n?) :
a n’)
o n?+ 100n
a 1000n’- 1000 n 2D
o

g /‘Q\ifx

These are not:
a pl-99

a n
o lgn

® (Theta, asymptotic =)

Definition: f{n) is in ©(g(n)) if there exist positive constants c,, ¢, and
non-negative integer n, such that

¢, g(n) <fin) < ¢, g(n) for every n > n,

Example: c28(m)

o n?-2nis O(n?) =
fn)
— picke, =0.5,¢,=1,n,=4 /
_./4_15(71)

Find a tight ®-bound for: Ve /’/
a 4n3 7Z -7'__ :

a 4n3+2n >
My

13

1/18/17

Establishing order of growth

High level idea: ignore:
- constant factors (too system-dependent)

- low-order terms (irrelevant for large inputs)

For example,
6n log n + 2n becomes

Establishing order of growth using limits

/’
0 order of growth of f{n) < order of growth of g(n)

lim f{n)/g(n) = < ¢ >0 order of growth of f{n) = order of growth of g(n)
n—00
oo order of growth of f{n) > order of growth of g(n)
N—
Examples:
-+ 10n Vs. n?
e n(n+1)/2 Vs. n?

14

1/18/17

L’ Hépital’ s Rule and Stirling’ s Formula

L’ Hopital’ s rule: If lim ... fin) = lim,_,., g(n) = and
the derivatives /', g” exist, then

im SW) ()

n= o g(n) n=e g '(n)

Example: log, n vs. n

Stirling’ s formula: n! = (27n)'2 (n/e)"

Orders of growth of some important functions

o All logarithmic functions log, n belong to the same class
O(log n) no matter what the logarithm’s base a>1 is.

o All polynomials of the same degree k belong to the same class:
anf +a, nFl+ L+ a, € O(nh).

o Exponential functions a” have different orders of growth for
different a.

o order logn < order n* (a>0) <order a” <order n! < order n"

15

Some properties of asymptotic order of growth

a f(n) € O(f(n))
a fln) € O(g(n)) iff g(n) EQ(An))
a Iff(n) € O(g (n)) and g(n) € O(h(n)) , then fin) € O(h(n))

Note similarity with a <b

a If,(n) € O(g,(n)) and fy(n) € O(gy(n)) , then
fi(n) + fy(n) € O(max {g, (n), g,(n)})

Homework

o Exercises
1.1: 6,9a, 12
1.2:1,2
1.3:4,5
2.1:3,5a,8,9
2.2:3,5,9,12

o Reading:
— Preface and Chapter 1 (Sections 1.1-1.4)
— Sections 2.1 and 2.2

1/18/17

16

