CSC 8301- Design and Analysis of Algorithms

Lecture 1
\section*{Introduction}

Analysis framework and asymptotic notations

What is an algorithm?

An algorithm is a finite sequence of unambiguous
instructions for solving a problem, i.e., for obtaining a required output for any legitimate input.

Knuth's 5 important features of an algorithm

- finiteness - terminates after a finite number of steps
- definiteness - must be precisely defined
- has 0 or more inputs from predefined sets of objects
- has 1 or more outputs
- effectiveness - each operation can be executed exactly in a finite length of time using pencil and paper
(Donald E. Knuth, "The Art of Computer Programming", vol.1)

Euclid's algorithm

Problem: Find $\operatorname{gcd}(m, n)$, the greatest common divisor of two nonnegative, not both zero integers m and n
Euclid's algorithm is based on repeated application of equality

$$
\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)
$$

Ex.: $\operatorname{gcd}(60,24)=$
while $n \neq 0$ do
$r \leftarrow m \bmod n$
$m \leftarrow n$
$n \leftarrow r$
return m

Why study algorithms?

- Theoretical importance
- The cornerstone of computer science
- Practical importance
- a practitioner's toolkit of known algorithms
- frameworks for designing and analyzing algorithms for new problems

Two main issues related to algorithms

- How to design algorithms
- How to analyze algorithm efficiency

Major Algorithm Design Techniques/Strategies

- Brute force
- Decrease and conquer
- Divide and conquer
- Transform and conquer
- Space-time tradeoff
- Greedy approach
- Dynamic programming
- Iterative improvement
- Backtracking
- Branch and Bound

Analysis of Algorithms

- How good is the algorithm?
- correctness (accuracy for approximation alg.)
- time efficiency
- space efficiency
- optimality
- Approaches:
- empirical (experimental) analysis
- theoretical (mathematical) analysis

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of times the algorithm's basic operation is executed as a function of input size

- Input size: number of input items or, if matters, their size
- Basic operation: the operation contributing the most toward the running time of the algorithm

Example: Searching for a Key in a List

```
ALGORITHM SequentialSearch (A[0..n-1], K)
    \(/ / S e a r c h e s ~ f o r ~ a ~ g i v e n ~ v a l u e ~ i n ~ a ~ g i v e n ~ a r r a y ~ b y ~ s e q u e n t i a l ~ s e a r c h ~\)
    \(/ /\) Input: An array \(A[0 . . n-1]\) and a search key \(K\)
    //Output: The index of the first element of \(A\) that matches \(K\)
    // or -1 if there are no matching elements
    \(i \leftarrow 0\)
    while \(i<n\) and \(A[i] \neq K\) do
        \(i \leftarrow i+1\)
    if \(i<n\) return \(i\)
    else return -1
Input Size?
Basic Operation?
```


Example: Multiplying two $\boldsymbol{n x} \boldsymbol{n}$ Matrices

```
ALGORITHM MatrixMultiplication(A[0..n-1, 0..n-1], \(B[0 . . n-1,0 . . n-1]\) )
    \(/ /\) Multiplies two \(n\)-by- \(n\) matrices by the definition-based algorithm
    //Input: Two \(n\)-by- \(n\) matrices \(A\) and \(B\)
    \(/ /\) Output: Matrix \(C=A B\)
    for \(i \leftarrow 0\) to \(n-1\) do
        for \(j \leftarrow 0\) to \(n-1\) do
        \(C[i, j] \leftarrow 0.0\)
        for \(k \leftarrow 0\) to \(n-1\) do
            \(C[i, j] \leftarrow C[i, j]+A[i, k] * B[k, j]\)
    return C
```

Input Size?
Basic Operation?

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

- Worst case: $\quad \mathrm{C}_{\text {worst }}(n)$ - maximum over inputs of size n
- Best case: $\quad \mathrm{C}_{\text {best }}(n)-$ minimum over inputs of size n
- Average case: $\mathrm{C}_{\text {avg }}(n)$ - "average" over inputs of size n
- Number of times the basic operation is executed on typical input
- NOT the average of worst and best case
- Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Average-case approach

- Random variable $\mathrm{C}(I)$:
- number of steps taken by algorithm on input I
- Probability $\mathrm{P}(I)$ of input I :
- how likely input I is
- Average running time is

$$
\Sigma_{I} \mathrm{C}(I) * \mathrm{P}(I)
$$

Example: Searching for a Key in a List

ALGORITHM SequentialSearch (A[0..n-1],K)
$/ /$ Searches for a given value in a given array by sequential search //Input: An array $A[0 . . n-1]$ and a search key K
//Output: The index of the first element of A that matches K
// or -1 if there are no matching elements
$i \leftarrow 0$
while $i<n$ and $A[i] \neq K$ do
$i \leftarrow i+1$
if $i<n$ return i
else return -1

Worst Case?

Best Case?
Average Case? (assuming probability of successful search is p and probability of the first match in each position i is same)

Average Case for Sequential Search (1)

Case 1: The key K is in the list, equally likely to be in any position

Average Case for Sequential Search (2)

Case 2: The probability that the key K is in the list is $p \leq 1$

Example: Multiplying two nxn Matrices

```
ALGORITHM MatrixMultiplication(A[0..n-1,0..n-1], B[0..n-1,0..n-1])
    //Multiplies two n-by-n matrices by the definition-based algorithm
    //Input: Two n-by-n matrices A and B
    //Output: Matrix C=AB
    for }i\leftarrow0\mathrm{ to }n-1\mathrm{ do
        for j}\leftarrow0\mathrm{ to }n-1\mathrm{ do
            C[i,j]}\leftarrow0.
            for }k\leftarrow0\mathrm{ to }n-1\mathrm{ do
                C[i,j]\leftarrowC[i,j]+A[i,k]*B[k,j]
    return C
```

Worst Case?
Best Case?
Average Case?

Types of formulas for basic operation count

- Exact formula

$$
\text { e.g., } \mathrm{C}(n)=n(n-1) / 2
$$

- Formula indicating order of growth with specific multiplicative constant

$$
\text { e.g., } \mathrm{C}(n) \approx 0.5 n^{2}
$$

- Formula indicating order of growth with unknown multiplicative constant
e.g., $\mathrm{C}(n) \approx c n^{2}$

Order of growth

Most important: Order of growth within a constant multiple as $n \rightarrow \infty$

Example:
$-\mathrm{C}(n)=3 n(n-1)$

- Suppose we double the input size. How much longer will the algorithm take?

Values of several functions important for analysis of algorithms

n	$\log _{2} n$	n	$n \log _{2} n$	n^{2}	n^{3}	2^{n}	$n!$
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^{6}$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^{2}$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^{4}$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^{5}$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^{6}$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^{7}$	10^{12}	10^{18}		

Example

- Order these functions according to their order of growth (from lowest to highest):

$$
2^{n} \quad n^{4 / 3} \quad n(\lg n)^{3} \quad n^{\lg n}
$$

Main Points of the Analysis Framework

- Both time and space efficiencies are measured as functions of the algorithm's input size.
- Time efficiency is measured by counting the number of times the algorithm's basic operation is executed.
- Space efficiency is measured by counting the number of extra memory units (beyond input and output) used by the algorithm.
- For some algorithms, one should distinguish among the worst, best and average case efficiencies.
- The main concern is the order of growth of the algorithm's running time and extra memory units consumed as input size goes to infinity.

Asymptotic order of growth

A way to classify functions according to their order of growth

- practical way to deal with complexity functions
- ignores constant factors and small input sizes
- Big-O
- $\mathrm{O}(g(n))$: class of functions $f(n)$ that grow no faster than $g(n)$
- Big-Theta
$-\Theta(g(n))$: class of functions $f(n)$ that grow at same rate as $g(n)$
- Big-Omega
- $\Omega(g(n))$: class of functions $f(n)$ that grow at least as fast as $g(n)$

Big-O (asymptotic \leq)

Definition: $f(n)$ is in $\mathrm{O}(g(n))$ if order of growth of $f(n) \leq$ order of growth of $g(n)$ (within constant multiple),
i.e., there exist positive constant c and non-negative integer n_{0} such that

$$
f(n) \leq c g(n) \text { for every } n \geq n_{0}
$$

Examples:

- $10 n^{2}$ is $\mathrm{O}\left(n^{2}\right)$
- $10 n$ is $\mathrm{O}\left(n^{2}\right)$
- $5 n+20$ is $\mathrm{O}(n)$

Ω (Omega, asymptotic \geq)

Definition: $f(n)$ is in $\Omega(g(n))$ if there exist positive constant c and non-negative integer n_{0} such that

$$
f(n) \geq c g(n) \text { for every } n \geq n_{0}
$$

These are all $\Omega\left(n^{2}\right)$:

- n^{2}
- $n^{2}+100 n$
- $1000 n^{2}-1000 n$
- n^{3}

These are not:

- $n^{1.999}$
- n
- $\lg n$

$\boldsymbol{\Theta}($ Theta, asymptotic $=$)

Definition: $f(n)$ is in $\Theta(g(n))$ if there exist positive constants c_{1}, c_{2} and non-negative integer n_{0} such that

$$
c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for every } n \geq n_{0}
$$

Example:

- $n^{2}-2 n$ is $\Theta\left(n^{2}\right)$
$-\operatorname{pick} c_{1}=0.5, c_{2}=1, n_{0}=4$

Find a tight Θ-bound for:

- $4 n^{3}$
- $4 n^{3}+2 n$

Establishing order of growth

High level idea: ignore:

- constant factors (too system-dependent)
- low-order terms (irrelevant for large inputs)

For example,
$6 n \log n+2 n$ becomes \qquad

Establishing order of growth using limits

Examples:

-10n
vs.
n^{2}

- $n(n+1) / 2$
vs.
n^{2}

L' Hôpital' s Rule and Stirling' s Formula

L' Hôpital' s rule: If $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and the derivatives f^{\prime}, g^{\prime} exist, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

Example: $\log _{2} n$ vs. $\sqrt{ } n$

Stirling' s formula: $n!\approx(2 \pi n)^{1 / 2}(n / \mathrm{e})^{n}$

Orders of growth of some important functions

- All logarithmic functions $\log _{a} n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base $a>1$ is.
- All polynomials of the same degree k belong to the same class: $a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{0} \in \Theta\left(n^{k}\right)$.
- Exponential functions a^{n} have different orders of growth for different a.
- order $\log n<$ order $n^{\alpha}(\alpha>0)<\operatorname{order} a^{n}<$ order $n!<$ order n^{n}

Some properties of asymptotic order of growth

- $f(n) \in \mathrm{O}(f(n))$

व $f(n) \in \mathrm{O}(g(n))$ iff $g(n) \in \Omega(f(\mathrm{n}))$

- If $f(n) \in \mathrm{O}(g(n))$ and $g(n) \in \mathrm{O}(h(n))$, then $f(n) \in \mathrm{O}(h(n))$

Note similarity with $\mathrm{a} \leq \mathrm{b}$

- If $f_{1}(n) \in \mathrm{O}\left(g_{1}(n)\right)$ and $f_{2}(n) \in \mathrm{O}\left(g_{2}(n)\right)$, then $f_{1}(n)+f_{2}(n) \in \mathrm{O}\left(\max \left\{g_{1}(n), g_{2}(n)\right\}\right)$

Homework

- Exercises
1.1: 6, 9a, 12
1.2: 1, 2
1.3: 4, 5
2.1:3, 5a, 8, 9
2.2:3, 5, 9,12
- Reading:
- Preface and Chapter 1 (Sections 1.1-1.4)
- Sections 2.1 and 2.2

