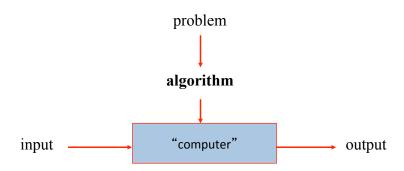
CSC 8301- Design and Analysis of Algorithms

Lecture 1 Introduction

Analysis framework and asymptotic notations

What is an algorithm?

An *algorithm* is a finite sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input.



Knuth's 5 important features of an algorithm

- □ finiteness terminates after a finite number of steps
- □ definiteness must be precisely defined
- □ has 0 or more inputs from predefined sets of objects
- □ has 1 or more outputs
- effectiveness each operation can be executed exactly in a finite length of time using pencil and paper
- (Donald E. Knuth, "The Art of Computer Programming", vol.1)

Euclid's algorithm

Problem: Find gcd(m,n), the greatest common divisor of two nonnegative, not both zero integers *m* and *n* Euclid's algorithm is based on repeated application of equality $gcd(m, n) = gcd(n, m \mod n)$

Ex.: gcd(60,24) =

while $n \neq 0$ do $r \leftarrow m \mod n$ $m \leftarrow n$ $n \leftarrow r$ return m

Why study algorithms?

- Theoretical importance
 - The cornerstone of computer science
- Practical importance
 - a practitioner's toolkit of known algorithms
 - frameworks for designing and analyzing algorithms for new problems

Two main issues related to algorithms

- □ How to design algorithms
- □ How to analyze algorithm efficiency

Major Algorithm Design Techniques/Strategies

□ Brute force	Greedy approach
Decrease and conquer	 Dynamic programming
Divide and conquer	Iterative improvement
□ Transform and conquer	Backtracking
□ Space-time tradeoff	Branch and Bound

Analysis of Algorithms

- □ How good is the algorithm?
 - correctness (accuracy for approximation alg.)
 - time efficiency
 - space efficiency
 - optimality

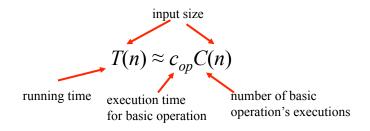
□ Approaches:

- empirical (experimental) analysis
- theoretical (mathematical) analysis

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of times the algorithm's *basic operation* is executed as a function of *input size*

- □ Input size: number of input items or, if matters, their size
- <u>Basic operation</u>: the operation contributing the most toward the running time of the algorithm



Example: Searching for a Key in a List

ALGORITHM SequentialSearch(A[0..n - 1], K) //Searches for a given value in a given array by sequential search //Input: An array A[0..n - 1] and a search key K//Output: The index of the first element of A that matches K// or -1 if there are no matching elements $i \leftarrow 0$ while i < n and $A[i] \neq K$ do $i \leftarrow i + 1$ if i < n return ielse return -1

Input Size? Basic Operation?

Example: Multiplying two nxn Matrices

ALGORITHM MatrixMultiplication(A[0..n - 1, 0..n - 1], B[0..n - 1, 0..n - 1]) //Multiplies two *n*-by-*n* matrices by the definition-based algorithm //Input: Two *n*-by-*n* matrices A and B //Output: Matrix C = ABfor $i \leftarrow 0$ to n - 1 do for $j \leftarrow 0$ to n - 1 do $C[i, j] \leftarrow 0.0$ for $k \leftarrow 0$ to n - 1 do $C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]$ return C

Input Size? Basic Operation?

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

- □ Worst case: $C_{worst}(n)$ maximum over inputs of size n
- □ Best case: $C_{\text{best}}(n)$ minimum over inputs of size *n*
- □ Average case: $C_{avg}(n)$ "average" over inputs of size *n*
 - Number of times the basic operation is executed on typical input
 - NOT the average of worst and best case
 - Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Average-case approach

- Random variable C(*I*):
 number of steps taken by algorithm on input *I*
- Probability P(I) of input I:
 how likely input I is
- Average running time is

 $\Sigma_I C(I) * P(I)$

Example: Searching for a Key in a List

```
ALGORITHM SequentialSearch(A[0..n - 1], K)

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n - 1] and a search key K

//Output: The index of the first element of A that matches K

// or -1 if there are no matching elements

i \leftarrow 0

while i < n and A[i] \neq K do

i \leftarrow i + 1

if i < n return i

else return -1
```

Worst Case?

Best Case?

Average Case? (assuming probability of successful search is p and probability of the first match in each position i is same)

Average Case for Sequential Search (1)

Case 1: The key *K* is in the list, equally likely to be in any position

Average Case for Sequential Search (2)

Case 2: The probability that the key *K* is in the list is $p \le 1$

Example: Multiplying two nxn Matrices

ALGORITHM MatrixMultiplication(A[0..n - 1, 0..n - 1], B[0..n - 1, 0..n - 1]) //Multiplies two n-by-n matrices by the definition-based algorithm //Input: Two n-by-n matrices A and B //Output: Matrix C = ABfor $i \leftarrow 0$ to n - 1 do $for j \leftarrow 0$ to n - 1 do $C[i, j] \leftarrow 0.0$ for $k \leftarrow 0$ to n - 1 do $C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]$ return C

Worst Case? Best Case? Average Case?

Types of formulas for basic operation count

□ Exact formula

e.g., C(n) = n(n-1)/2

• Formula indicating *order of growth* with specific multiplicative constant

e.g., $C(n) \approx 0.5 n^2$

Formula indicating order of growth with unknown multiplicative constant

e.g., $C(n) \approx cn^2$

Order of growth

Most important: Order of growth within a constant multiple as $n \rightarrow \infty$

Example:

- C(n) = 3n(n-1)

- Suppose we double the input size. How much longer will the algorithm take?

Values of several functions important for analysis of algorithms

п	$\log_2 n$	п	$n \log_2 n$	n^2	<i>n</i> ³	2^n	<i>n</i> !
10	3.3	10 ¹	3.3 · 10 ¹	10 ²	10 ³	10 ³	3.6 · 10 ⁶
102	6.6	102	6.6 · 10 ²	104	106	$1.3 \cdot 10^{30}$	9.3 · 10 ¹⁵⁷
103	10	103	1.0 · 104	106	109		
104	13	104	1.3 · 10 ⁵	108	1012		
105	17	105	$1.7 \cdot 10^{6}$	1010	1015		
106	20	106	2.0 · 107	1012	1018		3.6 · 10 ⁶ 9.3 · 10 ¹⁵⁷

Example

Order these functions according to their order of growth (from lowest to highest):

 $2^n n^{4/3} n(\lg n)^3 n^{\lg n}$

Main Points of the Analysis Framework

- Both time and space efficiencies are measured as functions of the algorithm's input size.
- Time efficiency is measured by counting the number of times the algorithm's basic operation is executed.
- Space efficiency is measured by counting the number of extra memory units (beyond input and output) used by the algorithm.
- □ For some algorithms, one should distinguish among the worst, best and average case efficiencies.
- □ The main concern is the *order of growth* of the algorithm's running time and extra memory units consumed as input size goes to infinity.

Asymptotic order of growth

A way to classify functions according to their order of growth

- practical way to deal with complexity functions

- ignores constant factors and small input sizes
- Big-O
 O(g(n)): class of functions f(n) that grow <u>no faster</u> than g(n)
- □ Big-Theta $- \Theta(g(n))$: class of functions f(n) that grow <u>at same rate</u> as g(n)
- Big-Omega

- $\Omega(g(n))$: class of functions f(n) that grow <u>at least as fast</u> as g(n)

Big-O (asymptotic ≤)

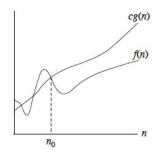
Definition: f(n) is in O(g(n)) if order of growth of $f(n) \le$ order of growth of g(n) (within constant multiple),

i.e., there exist positive constant *c* and non-negative integer n_0 such that

 $f(n) \le c g(n)$ for every $n \ge n_0$

Examples:

- **1** $10n^2$ is O(n^2)
- $\square 10n \text{ is } O(n^2)$
- \Box 5*n*+20 is O(*n*)



Ω (Omega, asymptotic \geq)

Definition: f(n) is in $\Omega(g(n))$ if there exist positive constant *c* and non-negative integer n_0 such that

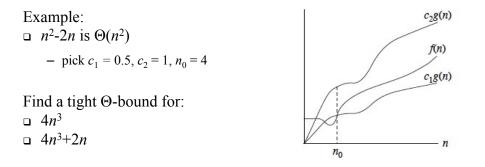
 $f(n) \ge c g(n)$ for every $n \ge n_0$

These are all $\Omega(n^2)$: n^2 $n^2 + 100n$ $1000n^2 - 1000 n$ n^3 These are not: $n^{1.999}$ n nlg n

Θ (Theta, asymptotic =)

Definition: f(n) is in $\Theta(g(n))$ if there exist positive constants c_1 , c_2 and non-negative integer n_0 such that

 $c_1 g(n) \le f(n) \le c_2 g(n)$ for every $n \ge n_0$



Establishing order of growth

High level idea: ignore:

- constant factors (too system-dependent)
- low-order terms (irrelevant for large inputs)

For example, $6n \log n + 2n$ becomes _____

Establishing order of growth using limits

$$\lim_{n \to \infty} f(n)/g(n) = \begin{cases} 0 \text{ order of growth of } f(n) < \text{ order of growth of } g(n) \\ c > 0 \text{ order of growth of } f(n) = \text{ order of growth of } g(n) \\ \infty \text{ order of growth of } f(n) > \text{ order of growth of } g(n) \end{cases}$$

Examples:

• 10*n* vs.
$$n^2$$

•
$$n(n+1)/2$$
 vs. n^2

L'Hôpital's Rule and Stirling's Formula

L' Hôpital' s rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$

Example: $\log_2 n$ vs. \sqrt{n}

Stirling's formula: $n! \approx (2\pi n)^{1/2} (n/e)^n$

Orders of growth of some important functions

- □ All logarithmic functions $\log_a n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base a>1 is.
- □ All polynomials of the same degree *k* belong to the same class: $a_k n^k + a_{k-1} n^{k-1} + ... + a_0 \in \Theta(n^k).$
- Exponential functions *aⁿ* have different orders of growth for different *a*.
- $\Box \quad \text{order } \log n < \text{order } n^{\alpha} \ (\alpha > 0) < \text{order } a^n < \text{order } n! < \text{order } n^n$

Some properties of asymptotic order of growth

$$\Box f(n) \in \mathcal{O}(f(n))$$

- $\Box f(n) \in \mathcal{O}(g(n)) \text{ iff } g(n) \in \Omega(f(n))$
- □ If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$

Note similarity with $a \le b$

□ If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$

Homework

Exercises
1.1: 6, 9a, 12
1.2: 1, 2
1.3: 4, 5
2.1: 3, 5a, 8, 9
2.2: 3, 5, 9, 12

- □ Reading:
 - Preface and Chapter 1 (Sections 1.1-1.4)
 - Sections 2.1 and 2.2