
1/18/17	

1	

CSC 8301- Design and Analysis of Algorithms

Lecture 1
Introduction

Analysis framework and asymptotic notations

What is an algorithm?

An algorithm is a finite sequence of unambiguous
instructions for solving a problem, i.e., for obtaining a
required output for any legitimate input.

“computer” 	

problem

algorithm

input output

1/18/17	

2	

Knuth’s 5 important features of an algorithm

q  finiteness – terminates after a finite number of steps

q  definiteness – must be precisely defined

q  has 0 or more inputs from predefined sets of objects

q  has 1 or more outputs

q  effectiveness – each operation can be executed exactly in a finite
length of time using pencil and paper

(Donald E. Knuth, “The Art of Computer Programming”, vol.1)

Euclid’s algorithm

Problem: Find gcd(m,n), the greatest common divisor of two
 nonnegative, not both zero integers m and n

Euclid’s algorithm is based on repeated application of equality
gcd(m, n) = gcd(n, m mod n)

Ex.: gcd(60,24) =

while n ≠ 0 do

 r ← m mod n
 m← n
 n ← r
return m

1/18/17	

3	

Why study algorithms?

q  Theoretical importance
– The cornerstone of computer science

q  Practical importance
– a practitioner’s toolkit of known algorithms
–  frameworks for designing and analyzing algorithms

for new problems

Two main issues related to algorithms

q  How to design algorithms

q  How to analyze algorithm efficiency

1/18/17	

4	

Major Algorithm Design Techniques/Strategies

q  Brute force

q  Decrease and conquer

q  Divide and conquer

q  Transform and conquer

q  Space-time tradeoff

q  Greedy	 approach	

q  Dynamic	 programming	
	

q  Itera;ve	 improvement	

q  Backtracking	

q  Branch	 and	 Bound	
	

Analysis of Algorithms

q  How good is the algorithm?
– correctness (accuracy for approximation alg.)
–  time efficiency
– space efficiency
– optimality

q  Approaches:
– empirical (experimental) analysis
–  theoretical (mathematical) analysis

1/18/17	

5	

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of
times the algorithm’s basic operation is executed as a function
of input size
q  Input size: number of input items or, if matters, their size
q  Basic operation: the operation contributing the most toward the

running time of the algorithm

 T(n) ≈ copC(n)

running time execution time
for basic operation

number of basic
operation’s executions

input size

Example: Searching for a Key in a List

Input Size?
Basic Operation?

1/18/17	

6	

Example: Multiplying two nxn Matrices

Input Size?
Basic Operation?

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

q  Worst case: Cworst(n) – maximum over inputs of size n

q  Best case: Cbest(n) – minimum over inputs of size n

q  Average case: Cavg(n) – “average” over inputs of size n
–  Number of times the basic operation is executed on typical input
–  NOT the average of worst and best case
–  Expected number of basic operations considered as a random variable under

some assumption about the probability distribution of all possible inputs

1/18/17	

7	

Average-case approach

q  Random variable C(I):
–  number of steps taken by algorithm on input I

q  Probability P(I) of input I:
–  how likely input I is

q  Average running time is

 ΣI C(I)*P(I)

Example: Searching for a Key in a List

Worst Case?
Best Case?
Average Case? (assuming probability of successful search is p and
probability of the first match in each position i is same)

1/18/17	

8	

15

Average Case for Sequential Search (1)

Case 1: The key K is in the list, equally likely to be in any position

16

Average Case for Sequential Search (2)

Case 2: The probability that the key K is in the list is p ≤ 1

1/18/17	

9	

Example: Multiplying two nxn Matrices

Worst Case?
Best Case?
Average Case?

Types of formulas for basic operation count

q  Exact formula
 e.g., C(n) = n(n-1)/2

q  Formula indicating order of growth with specific multiplicative
constant

 e.g., C(n) ≈ 0.5 n2

q  Formula indicating order of growth with unknown multiplicative

constant
 e.g., C(n) ≈ cn2

1/18/17	

10	

Order of growth

Most important: Order of growth within a constant
 multiple as n →∞

Example:
–  C(n) = 3n(n-1)
–  Suppose we double the input size. How much longer will the

algorithm take?

Values of several functions
important for analysis of algorithms

 n log2n n n log2n n² n³ 2ⁿ n!

10 3.3 101 3.3⋅101 102 103 103 3.6⋅106

102 6.6 102 6.6⋅102 104 106 1.3⋅1030 9.3⋅10157

103 10 103 1.0⋅104 106 109

104 13 104 1.3⋅105 108 1012

105 17 105 1.7⋅106 1010 1015

106 20 106 2.0⋅107 10¹² 1018

1/18/17	

11	

q  Order these functions according to their order of growth (from
lowest to highest):

 2n n4/3 n(lg n)3 n lg n

Example

Main Points of the Analysis Framework

q  Both time and space efficiencies are measured as functions of the
algorithm’s input size.

q  Time efficiency is measured by counting the number of times the
algorithm’s basic operation is executed.

q  Space efficiency is measured by counting the number of extra
memory units (beyond input and output) used by the algorithm.

q  For some algorithms, one should distinguish among the worst, best
and average case efficiencies.

q  The main concern is the order of growth of the algorithm’s running
time and extra memory units consumed as input size goes to infinity.

1/18/17	

12	

Asymptotic order of growth

A way to classify functions according to their order of growth
 - practical way to deal with complexity functions
 - ignores constant factors and small input sizes

q  Big-O
–  O(g(n)): class of functions f(n) that grow no faster than g(n)

q  Big-Theta
–  Θ (g(n)): class of functions f(n) that grow at same rate as g(n)

q  Big-Omega
–  Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

Big-O (asymptotic ≤)

Definition: f(n) is in O(g(n)) if order of growth of f(n) ≤ order of
growth of g(n) (within constant multiple),
i.e., there exist positive constant c and non-negative integer n0 such
that

 f(n) ≤ c g(n) for every n ≥ n0

Examples:
q  10n2 is O(n2)

q  10n is O(n2)

q  5n+20 is O(n)

1/18/17	

13	

Ω (Omega, asymptotic ≥)

Definition: f(n) is in Ω (g(n)) if there exist positive constant c and
non-negative integer n0 such that

 f(n) ≥ c g(n) for every n ≥ n0

These are all Ω(n2) :
q  n2

q  n2 + 100n
q  1000n2 - 1000 n
q  n3

These are not:
q  n1.999

q  n
q  lg n

Θ (Theta, asymptotic =)

Definition: f(n) is in Θ(g(n)) if there exist positive constants c1, c2 and
non-negative integer n0 such that

 c1 g(n) ≤ f(n) ≤ c2 g(n) for every n ≥ n0

Example:
q  n2-2n is Θ(n2)

–  pick c1 = 0.5, c2 = 1, n0 = 4

Find a tight Θ-bound for:
q  4n3

q  4n3+2n

1/18/17	

14	

27

Establishing order of growth

 High level idea: ignore:
 - constant factors (too system-dependent)
 - low-order terms (irrelevant for large inputs)

 For example,

 6n log n + 2n becomes _______________

Establishing order of growth using limits

lim f(n)/g(n) =

0 order of growth of f(n) < order of growth of g(n)

c > 0 order of growth of f(n) = order of growth of g(n)

∞ order of growth of f(n) > order of growth of g(n)

Examples:

•  10n vs. n2

•  n(n+1)/2 vs. n2

n→∞

1/18/17	

15	

L’Hôpital’s Rule and Stirling’s Formula

L’Hôpital’s rule: If limn→∞ f(n) = limn→∞ g(n) =∞ and
 the derivatives f´, g´ exist, then

Stirling’s formula: n! ≈ (2πn)1/2 (n/e)n

f(n)
g(n)

lim
n→∞

=
f ´(n)
g ´(n)

lim
n→∞

 Example: log2 n vs. √n

Orders of growth of some important functions

q  All logarithmic functions loga n belong to the same class
Θ(log n) no matter what the logarithm’s base a>1 is.

q  All polynomials of the same degree k belong to the same class:
 aknk + ak-1nk-1 + … + a0 ∈ Θ(nk).

q  Exponential functions an have different orders of growth for
different a.

q  order log n < order nα (α>0) < order an < order n! < order nn

1/18/17	

16	

Some properties of asymptotic order of growth

q  f(n) ∈ O(f(n))

q  f(n) ∈ O(g(n)) iff g(n) ∈Ω(f(n))

q  If f (n) ∈ O(g (n)) and g(n) ∈ O(h(n)) , then f(n) ∈ O(h(n))

Note similarity with a ≤ b

q  If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) , then
 f1(n) + f2(n) ∈ O(max{g1(n), g2(n)})

Homework

q  Exercises
1.1: 6, 9a, 12
1.2: 1, 2
1.3: 4, 5
2.1: 3, 5a, 8, 9
2.2: 3, 5, 9, 12

q  Reading:
–  Preface and Chapter 1 (Sections 1.1-1.4)
–  Sections 2.1 and 2.2

