Lecture 2
Principles of the Analysis of Algorithms

Reading: Sections 2.1 and 2.2
Exercises:
2.1: 1, 2, 3, 4, 6, 8, 10
2.2: 1, 2, 3, 5, 7

Next time: Analysis of nonrecursive algorithms (2.3)

Analysis of Algorithms

- Issues:
 - Termination
 - Correctness
 - Time efficiency
 - Space efficiency
 - Optimality

- Approaches:
 - Theoretical analysis
 - Empirical analysis

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of basic operations as a function of input size.

- **Input size**: amount of memory needed to store input

- **Basic operation**: proportional to amount of time taken by algorithm.

\[T(n) = c^n C(n) \]

Input size and basic operation examples

<table>
<thead>
<tr>
<th>Problem</th>
<th>Input size measure</th>
<th>Basic operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for key in list of n items</td>
<td>Number of items in list</td>
<td>Key comparison</td>
</tr>
<tr>
<td>Multiply two matrices of floating point numbers</td>
<td>Dimensions of matrices</td>
<td>Floating point multiplication</td>
</tr>
<tr>
<td>Compute (a^n)</td>
<td>n</td>
<td>Floating point multiplication</td>
</tr>
<tr>
<td>Solve graph problem</td>
<td>Vertices and/or edges</td>
<td>Visiting a vertex or traversing an edge</td>
</tr>
</tbody>
</table>

Empirical analysis of time efficiency

- Also measured in terms of input size
- Use physical unit of time (e.g., milliseconds)
 OR
- Count actual number of basic operations

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

- **Worst case**: \(W(n) \) – maximum over inputs of size \(n \)
- **Best case**: \(B(n) \) – minimum over inputs of size \(n \)
- **Average case**: \(A(n) \) – “average” over inputs of size \(n \\
 \- Number of times the basic operation will be executed on typical input
 \- NOT the average of worst and best case
 \- Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs
Example: Sequential search

Problem: Given a list of \(n \) elements and a search key \(K \), find an element equal to \(K \), if any.

Algorithm: Scan the list and compare its successive elements with \(K \) until either a matching element is found (successful search) or the list is exhausted (unsuccessful search).

Worst case

Best case

Average case

Types of formulas for basic operation count

- Exact formula
 - e.g., \(C(n) = n(n+1)/2 \)
- Formula indicating order of growth with specific multiplicative constant
 - e.g., \(C(n) = 0.5 n^2 \)
- Formula indicating order of growth with unknown multiplicative constant
 - e.g., \(C(n) \approx cn^2 \)

Order of growth

Most important: Order of growth within a constant multiple as \(n \to \infty \).

Example:
- How much faster will algorithm run on computer that is twice as fast?
- How much longer does it take to solve problem of double input size?

See tables 2.1 and 2.2

Asymptotic growth rate

- A way of comparing functions that ignores constant factors and small input sizes
- \(\Omega(g(n)) \): class of functions \(f(n) \) that grow at least as fast as \(g(n) \)
- \(\Theta(g(n)) \): class of functions \(f(n) \) that grow at same rate as \(g(n) \)
- \(O(g(n)) \): class of functions \(f(n) \) that grow no faster than \(g(n) \)

Establishing rate of growth: Method 1 – using limits

\[
l \lim_{n \to \infty} \frac{T(n)}{g(n)} =
\begin{cases}
0 & \text{order of growth of } T(n) \text{ is } O(g(n)) \\
\infty & \text{order of growth of } T(n) \text{ is } \Omega(g(n)) \\
\text{finite} & \text{order of growth of } T(n) \text{ is } \Theta(g(n))
\end{cases}
\]

Examples:
- \(10n \) vs. \(2n^2 \)
- \(n(n+1)/2 \) vs. \(n^2 \)
- \(\log n \) vs. \(\log(n) \)

L'Hôpital’s rule

If

\[
l \lim_{n \to \infty} f(n) = l \lim_{n \to \infty} g(n) = 0\]

Then

\[
l \lim_{n \to \infty} \frac{f(n)}{g(n)} = l \lim_{n \to \infty} \frac{f'(n)}{g'(n)}
\]

Example: \(\log n \) vs. \(n \)
Establishing rate of growth: Method 2 – using definition

- \(f(n) \) is \(O(g(n)) \) if order of growth of \(f(n) \) \(\leq \) order of growth of \(g(n) \) (within constant multiple)

- There exist positive constant \(c \) and non-negative integer \(n_0 \) such that
 \[
 f(n) \leq c \cdot g(n) \text{ for every } n \geq n_0
 \]

Examples:
- \(10n \) is \(O(2n^2) \)
- \(5n + 20 \) is \(O(10n) \)