
Algorithms, 4 · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2012 · April 24, 2014 5:12:33 PM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

5.5 DATA COMPRESSION

‣ basics
‣ run-length coding
‣ Huffman compression
‣ LZW compression

2

‣ basics
‣ run-length coding
‣ Huffman compression
‣ LZW compression

3

Data compression

Compression reduces the size of a file:!
• To save space when storing it.!
• To save time when transmitting it.!
• Most files have lots of redundancy.!
!
Who needs compression?!
• Moore's law: # transistors on a chip doubles every 18-24 months.!
• Parkinson's law: data expands to fill space available. !
• Text, images, sound, video, …!
!

Lossy vs Lossless compression!
• Maybe we can sacrifice some of the non-essential detail…!

Lossy compression for images

Exploit what we know about human vision!
!
• Human eye tends to “blend” nearby colors!
• Visual acuity varies markedly across features!
– Discontinuities easily seen, absolutes less crucial!

• Color perception is relative

4

Do	 these	 colors	 look	 the	 same	 as	 ...

Lossy compression for images

Exploit what we know about human vision!
!
• Human eye tends to “blend” nearby colors!
• Visual acuity varies markedly across features!
– Discontinuities easily seen, absolutes less crucial!

• Color perception is relative

5

these?

Lossy compression for images

Exploit what we know about human vision!
!
• Human eye tends to “blend” nearby colors!
• Visual acuity varies markedly across features!
– Discontinuities easily seen, absolutes less crucial!

• Color perception is relative

6

Not	 quite

Generic file compression.!
• Files: GZIP, BZIP, 7z.!
• Archivers: PKZIP.!
• File systems: NTFS, HFS+, ZFS.!
!
Multimedia.!
• Images: GIF, JPEG. !
• Sound: MP3.!
• Video: MPEG, DivX™, HDTV.!
!

Communication.!
• ITU-T T4 Group 3 Fax.!
• V.42bis modem.!
• Skype.!
!

Databases. Google, Facebook,

7

Applications of compression

Message. Binary data B we want to compress.!
Compress. Generates a "compressed" representation C (B).!
Expand. Reconstructs original bitstream B.!
!
!
!
!
!
!
!
!
!
Compression ratio. Bits in C (B) / bits in B.!
!
Ex. 50-75% or better compression ratio for natural language.

8

Lossless compression and expansion

uses fewer bits (you hope)

Basic model for data compression

Compress Expand
bitstream B

0110110101...

original bitstream B

0110110101...

compressed version C(B)

1101011111...

9

Data representation: genomic code

Genome. String over the alphabet { A, C, T, G }.!
!
Goal. Encode an N-character genome: ATAGATGCATAG...!
!
Standard ASCII encoding.!
• 8 bits per char.!
• 8 N bits.!
!
!
!
!
!
!
!

Fixed-length code. k-bit code supports alphabet of size 2k. !
Amazing but true. Initial genomic databases in 1990s did not use such a code!

char hex binary

A 41 01000001

C 43 01000011

T 54 01010100

G 47 01000111

char binary

A 00

C 01

T 10

G 11

!
!
!
!
Two-bit encoding.

• 2 bits per char.

• 2 N bits.

Binary standard input and standard output. Libraries to read and write bits from
standard input and to standard output.

10

Reading and writing binary data

664 CHAPTER 6 Q Strings

Binary input and output. Most systems nowadays, including Java, base their I/O on
8-bit bytestreams, so we might decide to read and write bytestreams to match I/O for-
mats with the internal representations of primitive types, encoding an 8-bit char with
1 byte, a 16-bit short with 2 bytes, a 32-bit int with 4 bytes, and so forth. Since bit-
streams are the primary abstraction for data compression, we go a bit further to allow
clients to read and write individual bits, intermixed with data of various types (primi-
tive types and String). The goal is to minimize the necessity for type conversion in
client programs and also to take care of operating-system conventions for representing
data.We use the following API for reading a bitstream from standard input:

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r bits of data and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

API for static methods that read from a bitstream on standard input

A key feature of the abstraction is that, in marked constrast to StdIn, the data on stan-
dard input is not necessarily aligned on byte boundaries. If the input stream is a single
byte, a client could read it 1 bit at a time with 8 calls to readBoolean(). The close()
method is not essential, but, for clean termination, clients should call close() to in-
dicate that no more bits are to be read. As with StdIn/StdOut, we use the following
complementary API for writing bitstreams to standard output:

public class BinaryStdOut

void write(boolean b) write the specified bit
void write(char c) write the specified 8-bit char

void write(char c, int r) write the r least significant bits of the specified char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

void close() close the bitstream

API for static methods that write to a bitstream on standard output

664 CHAPTER 6 Q Strings

Binary input and output. Most systems nowadays, including Java, base their I/O on
8-bit bytestreams, so we might decide to read and write bytestreams to match I/O for-
mats with the internal representations of primitive types, encoding an 8-bit char with
1 byte, a 16-bit short with 2 bytes, a 32-bit int with 4 bytes, and so forth. Since bit-
streams are the primary abstraction for data compression, we go a bit further to allow
clients to read and write individual bits, intermixed with data of various types (primi-
tive types and String). The goal is to minimize the necessity for type conversion in
client programs and also to take care of operating-system conventions for representing
data.We use the following API for reading a bitstream from standard input:

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r bits of data and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

API for static methods that read from a bitstream on standard input

A key feature of the abstraction is that, in marked constrast to StdIn, the data on stan-
dard input is not necessarily aligned on byte boundaries. If the input stream is a single
byte, a client could read it 1 bit at a time with 8 calls to readBoolean(). The close()
method is not essential, but, for clean termination, clients should call close() to in-
dicate that no more bits are to be read. As with StdIn/StdOut, we use the following
complementary API for writing bitstreams to standard output:

public class BinaryStdOut

void write(boolean b) write the specified bit
void write(char c) write the specified 8-bit char

void write(char c, int r) write the r least significant bits of the specified char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

void close() close the bitstream

API for static methods that write to a bitstream on standard output

Date representation. Three different ways to represent 12/31/1999.

Four ways to put a date onto standard output

110011111011111001111000

A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

Two chars and a short (BinaryStdOut)

BinaryStdOut.write((char) month);
BinaryStdOut.write((char) day);
BinaryStdOut.write((short) year);

000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

Three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

00001100000111110000011111001111

12 31 1999

00110001001100100010111100110111001100010010111100110001001110010011100100111001

1 2 / 3 1 / 1 9 9 9

12 31 1999 12 31 1999

80 bits

32 bits 21 bits (+ 3 bits for byte alignment at close)

96 bits

Four ways to put a date onto standard output

110011111011111001111000

A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

Two chars and a short (BinaryStdOut)

BinaryStdOut.write((char) month);
BinaryStdOut.write((char) day);
BinaryStdOut.write((short) year);

000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

Three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

00001100000111110000011111001111

12 31 1999

00110001001100100010111100110111001100010010111100110001001110010011100100111001

1 2 / 3 1 / 1 9 9 9

12 31 1999 12 31 1999

80 bits

32 bits 21 bits (+ 3 bits for byte alignment at close)

96 bits

11

Writing binary data

Q. How to examine the contents of a bitstream?

12

Binary dumps

6676.5 Q Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.
Given a 2-digit hex number, use the first hex
digit as a row index and the second hex digit
as a column reference to find the character
that it encodes. For example, 31 encodes the
digit 1, 4A encodes the letter J, and so forth.
This table is for 7-bit ASCII, so the first hex
digit must be 7 or less. Hex numbers starting
with 0 and 1 (and the numbers 20 and 7F)
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices
like typewriters were controlled by ASCII input; the table highlights a few that you
might see in dumps. For example SP is the space character, NUL is the null character, LF
is line-feed, and CR is carriage-return.

In summary, working with data compression requires us to reorient our thinking about
standard input and standard output to include binary encoding of data. BinaryStdIn
and BinaryStdOut provide the methods that we need. They provide a way for you to
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table

628 CHAPTER 5 � Strings

to open a file with an edi-
tor or view it in the manner
you view text files (or just
run a program that uses
BinaryStdOut), you are
likely to see gibberish, de-
pending on the system you
use. BinaryStdIn allows
us to avoid such system de-
pendencies by writing our
own programs to convert
bitstreams such that we can
see them with our standard
tools. For example, the pro-
gram BinaryDump at left is
a BinaryStdIn client that
prints out the bits from

standard input, encoded with the characters 0 and 1. This program is useful for debug-
ging when working with small inputs. We use a slightly more complicated version that
just prints the count when the width argument is 0 (see Exercise 5.5.X). The similar
client HexDump groups the data into 8-bit bytes and prints each as two hexadecimal
digits that each represent 4 bits. The client PictureDump displays the bits in a Picture.
You can download HexDump and PictureDump from the booksite. Typically, we use pip-
ing and redirection at the command-line level when working with binary files: we can
pipe the output of an encoder to BinaryDump, HexDump, or PictureDump, or redirect
it to a file.

public class BinaryDump
{
 public static void bits(String[] args)
 {
 int width = Integer.parseInt(args[0]);
 int cnt;
 for (cnt = 0; !BinaryStdIn.isEmpty(); cnt++)
 {
 if (cnt % width == 0) StdOut.println();
 if (BinaryStdIn.readBoolean())
 StdOut.print("1");
 else StdOut.print("0");
 }
 StdOut.println(cnt + " bits");
 }
}

Printing a bitstream on standard (character) output

Four ways to look at a bitstream

Standard character stream

Bitstream represented as 0 and 1 characters

Bitstream represented with hex digits

Bitstream represented as pixels in a Picture

16-by-6 pixel
window, magnified

% more abra.txt
ABRACADABRA!

% java PictureDump 16 6 < abra.txt

96 bits

% java BinaryDump 16 < abra.txt
0100000101000010
0101001001000001
0100001101000001
0100010001000001
0100001001010010
0100000100100001
96 bits

% java HexDump 4 < abra.txt
41 42 52 41
43 41 44 41
42 52 41 21
12 bytes

13

Universal data compression

Proposition. No algorithm can compress every bitstring.!
!
Pf 1. [by contradiction]!
• Suppose you have a universal data compression algorithm U  

that can compress every bitstream.!
• Given bitstring B0, compress it to get smaller bitstring B1.!
• Compress B1 to get a smaller bitstring B2.!
• Continue until reaching bitstring of size 0.!
• Implication: all bitstrings can be compressed to 0 bits!!
!

Pf 2. [by counting]!
• Suppose your algorithm that can compress all 1,000-bit strings.!
• 21000 possible bitstrings with 1,000 bits.!
• Only 1 + 2 + 4 + … + 2998 + 2999 can be encoded with ≤ 999 bits.

Universal
data compression?

.

.

.

U

U

U

U

U

U

!

14

Undecidability

A difficult file to compress: one million (pseudo-) random bits

% java RandomBits | java PictureDump 2000 500

1000000 bits

public class RandomBits  
{  
 public static void main(String[] args)  
 {  
 int x = 11111;  
 for (int i = 0; i < 1000000; i++)  
 {  
 x = x * 314159 + 218281;  
 BinaryStdOut.write(x > 0);  
 }  
 BinaryStdOut.close();  
 }  
}

15

Rdenudcany in Enlgsih lnagugae

Q. How much redundancy is in the English language?!
!
!
!
!
!
!
!
!
!
!
!
!
!
A. Quite a bit.

“ ... randomising letters in the middle of words [has] little or no
effect on the ability of skilled readers to understand the text. This
is easy to denmtrasote. In a pubiltacion of New Scnieitst you
could ramdinose all the letetrs, keipeng the first two and last two
the same, and reibadailty would hadrly be aftcfeed. My ansaylis
did not come to much beucase the thoery at the time was for
shape and senqeuce retigcionon. Saberi's work sugsegts we may
have some pofrweul palrlael prsooscers at work. The resaon for
this is suerly that idnetiyfing coentnt by paarllel prseocsing
speeds up regnicoiton. We only need the first and last two letetrs
to spot chganes in meniang. ” — Graham Rawlinson

16

‣ basics
‣ run-length coding
‣ Huffman compression
‣ LZW compression

17

Run-length encoding

Simple type of redundancy in a bitstream. Long runs of repeated bits.!
!
!
Representation. Use 4-bit counts to represent alternating runs of 0s and 1s: 
15 0s, then 7 1s, then 7 0s, then 11 1s.!
!
!
!
Q. How many bits to store the counts?!
A. We'll use 8 (but 4 in the example above).!
!
Q. What to do when run length exceeds max count?!
A. If longer than 255, intersperse runs of length 0.!
!
!
Applications. JPEG, ITU-T T4 Group 3 Fax, ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1
15 7 7 11

16 bits (instead of 40)

An application: compress a bitmap

Typical black-and-white-scanned image.!
• 300 pixels/inch.!
• 8.5-by-11 inches.!
• 300 × 8.5 × 300 × 11 = 8.415 million bits.!
!
Observation. Bits are mostly white.!
!
!
!
Typical amount of text on a page. 
40 lines × 75 chars per line = 3,000 chars.!
!
!

18

A typical bitmap, with run lengths for each row

7 1s
% java BinaryDump 32 < q32x48.bin
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000011111110000000000
00000000000011111111111111100000
00000000001111000011111111100000
00000000111100000000011111100000
00000001110000000000001111100000
00000011110000000000001111100000
00000111100000000000001111100000
00001111000000000000001111100000
00001111000000000000001111100000
00011110000000000000001111100000
00011110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111111000000000000001111100000
00111111000000000000001111100000
00011111100000000000001111100000
00011111100000000000001111100000
00001111110000000000001111100000
00001111111000000000001111100000
00000111111100000000001111100000
00000011111111000000011111100000
00000001111111111111111111100000
00000000011111111111001111100000
00000000000011111000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000011111110000
00000000000000000011111111111100
00000000000000000111111111111110
00000000000000000000000000000000
00000000000000000000000000000000

1536 bits

32
32
15 7 10
12 15 5
10 4 4 9 5
 8 4 9 6 5
 7 3 12 5 5
 6 4 12 5 5
 5 4 13 5 5
 4 4 14 5 5
 4 4 14 5 5
 3 4 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 6 14 5 5
 2 6 14 5 5
 3 6 13 5 5
 3 6 13 5 5
 4 6 12 5 5
 4 7 11 5 5
 5 7 10 5 5
 6 8 7 6 5
 7 20 5
 9 11 2 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
21 7 4
18 12 2
17 14 1
32
32

17 0s

19

‣ basics
‣ run-length coding
‣ Huffman compression
‣ LZW compression

David Huffman

Use different number of bits to encode different chars.!
!
Ex. Morse code: • • • − − − • • •!
!
Issue. Ambiguity. !
SOS ?
V7 ?
IAMIE ?
EEWNI ?
!
!

In practice. Use a medium gap to  
separate codewords.

20

Variable-length codes

codeword for S is a prefix  
of codeword for V

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Q. How do we avoid ambiguity?!
A. Ensure that no codeword is a prefix of another.!
!
Ex 1. Fixed-length code.!
Ex 2. Append special stop char to each codeword.!
Ex 3. General prefix-free code.!

21

Variable-length codes

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Q. How to represent the prefix-free code?!
A. A binary trie!!
• Chars in leaves.!
• Codeword is path from root to leaf.

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

22

Prefix-free codes: trie representation

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

23

Compression.!
• Method 1: start at leaf; follow path up to the root; print bits in reverse.!
• Method 2: create ST of key-value pairs.!
!
Expansion.!
• Start at root.!
• Go left if bit is 0; go right if 1. !
• If leaf node, print char and return to root.

Prefix-free codes: compression and expansion

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Prefix-free codes: how to transmit

Q. How to transmit the trie?!
A. Write preorder traversal of trie; mark leaf and internal nodes with a bit (can then
reverse process to reconstruct).!

!
!
!
!
!
!
!
!
!
!
!
!
!

Note. If message is long, overhead of transmitting trie is small.

24

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

!

!

C

A

01010000010010100010001000010101010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55

25

Huffman codes

Q. How to find best prefix-free code?!
!
Huffman algorithm:!
• Count frequency freq[i] for each char i in input.!
• Start with one node corresponding to each char i (with weight freq[i]).!
• Repeat until single trie formed:!

- select two tries with min weight freq[i] and freq[j]!
- merge into single trie with weight freq[i] + freq[j]!
!
!

Applications:

Proposition. [Huffman 1950s] Huffman algorithm produces an optimal  
prefix-free code.!
Pf. See textbook.!
!
!
Implementation.!
• Pass 1: tabulate char frequencies and build trie.!
• Pass 2: encode file by traversing trie or lookup table.!
!

Running time. Using a binary heap ⇒ N + R log R .!
!
!
!
!
!

26

Huffman encoding summary

no prefix-free code uses fewer bits

input

size

alphabet

size

27

Lossless data compression benchmarks

year scheme bits / char

1967 ASCII 7

1950 Huffman 4.7

1977 LZ77 3.94

1984 LZMW 3.32

1987 LZH 3.3

1987 move-to-front 3.24

1987 LZB 3.18

1987 gzip 2.71

1988 PPMC 2.48

1994 SAKDC 2.47

1994 PPM 2.34

1995 Burrows-Wheeler 2.29

1997 BOA 1.99

1999 RK 1.89

data compression using Calgary corpus

