4.2 DIRECTED GRAPHS

» digraph API

» digraph search

» topological sort

» strong components

Algorithms, 4 . Robert Sedgewick and Kevin Wayne - Copyright © 2002-2012 - April 10, 2014 3:43:09 PM

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

vertex of
outqleérree 4
and indegree 2

o ’

Srraeiad) el (67=(®) directed

irectea pa @ 9 zcrfccltee
(%)

fWOtOZ\Qf p,
L

Road network

Vertex = intersection; edge = one-way street.

w VTS O W I “~ G
t § & % = ~ & %%, /
s (7} % S S e
] S 4 / ¥ § &
-~ & @ 72 'S - & &
Vest ©] % S) G, Y
ry St T O@ Canal St & 9/7 s "
~— d fa) Station [1] © /¢ 06\[
Vestry st N, < ~
7
: ! RN /
ai f w ?.'\ Canal St
-aight St — N3] Station [A,C E] 7 ~
2 Laight st = § \ m '3 7
o
< 1 Laight s G’e,,
< — i (o4
g t | e = =aght St = S
T — S |le 7 >
@ = HUb&n St ‘ ’ § Z s\o&
§ (}5 ('b" (7)- N ’5\ OQ / ~
§ % < -z York S § oe/& é"(o !
o O 3 © — I t éb 2 ¢
Bea R O
ch St — 7y X r 7 $a
Ercsson s¢ 7P
l e ‘/80@0
otne () o afo!
g Sy S ' Uy
—~ § 6} Q
- N MOOre St - (/"s.p
} e N M / g,
w Oore St r S ’
c 6 ™ ‘ Canal St Stati
8 / (] ™ [N.Q.RW]
e Frank)] i & '.;
5 LK — —c'tart.kll" :1, -'08\ 4 > M/G/ 4
5 = A S N > S s
g ranklin Sy &5 3 £ &y
o \“ /§ ¢ (JQQ g 4\0\
g N =,
T “~
amson gy O + N g § °r§’
Hapr { c S
1Son St — 60/7 3 ~ f !’lfb. Q
Uy i) e
R S¢ /¥ KL S /7 Sy N
“ / “~
‘ £ Y /
3
g " ©2008 Google - Map data ©20 \Sanbth, NAVTEQ™ - Terms of Use
- » 3

“%

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

if x5 is true,
then x0 is true

é 4
(\9

"

.
b

%
b o4
o

L
o><

Combinational circuit

Vertex = logical gate; edge = wire.

WordNet graph

Vertex = synset; edge = hypernym relationship.

event

happeningoccurrence occurrent natural_event

miracle
act human_action human_activity
change alteration modification miracle \
/ \ \ group_action

damage harm impairment transition increase forfeitforfeiture sacrlﬁce action
/ /’\ resistance opposmon transgressmn
leap jump saltation jump leap
change
demotlon /I\ variation

motion movement move

T T~

“uy locomotion travel descent
‘o 0 \
W, runrunning jump parachuting

)

http:/ /wordnet.princeton.edu dash sprint

The McChrystal Afghanistan PowerPoint slide

Afghanistan Stability / COIN Dynamics S St | [ey i
E E;:;:E:u:meueu
0 | Conltion Foreas & Actons
—-E_\-‘_. B | Phyzioal Environmaent
BEs o — e
o e 2 e —=seiii =~—~————OUTSIDE SUPPORT
S e ANQ;%I:;’_* *‘*""&f';a‘?/"% DOCSTTOINSURGENT e
e —T

’ i - — > > FACTIONS 508 o
P /J(TACTICAL =\ SeperS lme T amio R =

S ——— \

/; s A W TN N 5 ea SN\ N
[== SIENNG R, e\ o\

ANSF !b:l.lvon—

pon

i g5 b SN \ R\ ST e
/ // % | \{@ // e e ANSF . -\“"-\\“\ \T""%'%L:M N { ~ i ,\»v'"" e

\ BEx pa«\u

x\‘l'a"%'é.‘/ 't\// /‘&}" ..3“3 ot & M""lNS"TUTlONAL /N e Xl INSURGENTS\‘ »

el

0" Co-e.\ —.(“""""‘ {“‘u'“" 87T rconos 8 \ \
COIN o ./ Poliey y . —— Use o Force 1 Tim. Taboriad DL e Cimind a
([..j‘“ i *t::."g t — .., oL oot w*&:\,\“ ,.E'."."., dard ‘\i""fj_ Tt L ﬂARCOTICS
COALITION No T °~.:.~.-3:'~’ AN M NG
CAPACITY &l [T " .,.:.,w u:«:) / N Ay
'PRIORITIES '% ST ALL “/" POPULATION "
Y CENTRAL &5 LGOVERNMENT/ L/ CONDITIONS (1 | S/ \'%
Us st B . RecuRs CAPAC'TY """ /& BEL'EFS l%m & = 7
Wleen GOV T \ \ A — y. e-p-mu-e-y \ \ /
\ / A - 4.-.|_‘....\-.‘_ _Gavr I-n/ b\\ [Ps POPULAR \JS.%L.;"
Ll "J J#‘ \Ma MWM \{ .~' l(mwt Harshness

e |57
TR A ([l 8 / f*
\ I_Hcl.fmug? * - ‘ :" Sl nqn'ol

'\ f N ‘ & F deon - 1‘ \T\ !\' : \, _— 4 b
\ COAL' lON NG - Q':' ﬁ,, -'.'» qqqqq ;.. C T\ Ero ~ :u:n,m 4 Sypixcion
San i o 3 ll:pl.-‘tm«t Safucoscile Secyrity, Torvice
\ YDOMESTIC . {——7hin AL ~....g.m SR ,1_“

\\\ \.\ %N \\‘:“-.;Z;\:_\ § ,..‘ z‘z;:t:om

/
\\ iy ¥ \ﬂ\\— B - nvu. » ” m["m'//. «%
\\\z\i‘iﬁ"\wﬁ :«\}f:fé:g_/x INFRA smw TURE /

AT e _)_2@ SERVICES
. e = =

S >~ECONOMY _ Y

—— e g
R T O S e i S ' %

\ SUPPORT _-‘gi','.', " _S-GOVERNANCE Emﬂ‘l‘“—.\\;—'-" /' (mpnn.-.m/ ﬁ_/ i \:ﬁ:

WORKING DRAFT - V3
B\‘(.‘I‘JJ.’}“"*

© PA Knowladae Limsed 2006 Page 22

http://www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide

Digraph applications

street intersection

transportation

one-way street

web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump

10

Digraph-processing: algorithms of the day

single-source NENERER
000 0 O D G O DF5

reachability RRNENER

1 ' M M
0*0—00<—0—~t—00<—0*—0
‘ . ‘ ‘

O=Q ireiser DD e DFS
11110000 2 11111011
transitive closure & }9 slooiiie CEAPY 3liiitii
O=© slococoir O=O sloooorz (from each vertex)

topological sort

DFS
(DAG)

strong components

NS os
% o= Kosaraju
/ DFS (twice)
(12)

11

elle]-To]o Wald

12

Digraph API

public class

Digraph

void
Iterable<Integer>
int

int

Digraph

String

Digraph (int V)
Digraph (In in)
addEdge (int v, int w)
adj (int v)

V()

E()

reverse ()

toString ()

In in = new In(args[0]);

Digraph G = new Digraph(in) ;

for (int v = 0; v < G.V(), v++)

for (int w : G.adj(v))

StdOut.println(v + "->" + w);

create an empty digraph with V vertices
create a digraph from input stream
add a directed edge v—w
vertices pointing from v
number of vertices
number of edges
reverse of this digraph

string representation

read digraph from

input stream

print out each

edge (once)

13

Digraph API

tinyDG. txt
22 D

R
D (6J=(®)

LN (N

ol

RER R
OHROONOKRONWN

=
N

=
OO WRAHONOVWONRKRNOOGO WN A

) 00O U1 W N

In in = new In(args[0]);

o®

java Digraph tinyDG. txt

0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
11->4
11->12
12-9

read digraph from

Digraph G = new Digraph(in) ;

for (int v = 0; v < G.V(), v++)

input stream

print out each

for (int w : G.adj(v)) <
StdOut.println(v + "->" + w);

edge (once)

14

Set-of-edges digraph representation

Store a list of the edges (linked list or array).

@@ > KO
5y
LSRN

0
0
2
2
3
3
4
4
5
6
6
6
6
7
7
8
9

O 0 ©W 0 & OB WPMNOUUN WO U »r

15

Adjacency-matrix digraph representation

Maintain a two-dimensional v-by-v boolean array;
for each edge v — w in the digraph: adj[v] [w]

true.

to

12

11

10

0

from

Note: parallel edges disallowed

16

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

R
®

@/

(63=(8)

adj[

/1NN

=
N R

]

51
0 3
5 |2
3 2
4

9 || 4
6 9
6

11}—+{10
12

4 {12

17

Adjacency-lists graph representation: Java implementation

public class Graph
{
private final int V;
private final Bag<Integer>[] adj;

public Graph (int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++4)
adj[v] = new Bag<Integer>() ;

public void addEdge (int v, int w)
{

adj[v] .add (w) ;

adj[w] .add (v) ;

public Iterable<Integer> adj(int v)

{ return adjv]; }

adjacency lists

create empty graph
with V vertices

add edge v-w

iterator for vertices
adjacent tov

18

Adjacency-lists digraph representation: Java implementation

public class Digraph
{

private final int V;
private final Bag<Integer>[] adj;

public Digraph (int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++4)
adj[v] = new Bag<Integer>() ;

public void addEdge (int v, int w)

{
adj[v] .add (w) ;

public Iterable<Integer> adj(int v)

{ return adjv]; }

adjacency lists

create empty digraph
with V vertices

add edge v—w

iterator for vertices
pointing from v

19

Digraph representations

In practice. Use adjacency-lists representation.
e Algorithms based on iterating over vertices pointing from v.
e Real-world digraphs tend to be sparse.

AN

huge number of vertices,
small average vertex degree

insert edge edge from iterate over vertices
representation space o
fromvitow v to w? pointing from v?

list of edges E
adjacency matrix Vv] 1 Vv
adjacency lists E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

20

» digraph search

21

Reachability

Problem. Find all vertices reachable from s along a directed path.

22

Depth-first search in digraphs

Same method as for undirected graphs.

e Every undirected graph is a digraph (with edges in both directions).

e DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

vertices w pointing from v.

e See Depth-first search in digraphs demo

23

http://www.cs.princeton.edu/courses/archive/spring14/cos226/demo/42DemoDepthFirstSearch.mov

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked; true if path to s

public DepthFirstSearch (Graph G, int s)
{

marked = new boolean[G.V()]; constructor marks

dfs (G, s); vertices connected to s

private void dfs (Graph G, int v)
{

recursive DFS does the work

marked([v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);

public boolean visited(int wv)

{ }

client can ask whether any

return marked|[v]; vertex is connected to s

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.

[SUbStitUte Digraph for Graph]

public class DirectedDFS
{

private boolean[] marked;

public DirectedDFS (Digraph G, int s)
{

marked = new boolean[G.V()];

dfs (G, s);
}

private void dfs (Digraph G, int v)
{
marked([v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);
}

public boolean visited(int wv)

{ }

return marked|[v];

true if path from s

constructor marks
vertices reachable from s

recursive DFS does the work

client can ask whether any
vertex is reachable from s

25

Reachability application: program control-flow analysis

Every program is a digraph.
e Vertex = basic block of instructions (straight-line program).
 Edge = jump.

42: <=

Dead-code elimination. NN

N2k ’

Find (and remove) unreachable code. / | s

11 . y; sEnon | ?"So |
Infinite-loop detection. [e |

S18 110 ' '

Determine whether exit is unreachable. | nessonom |

3M:
' MI21141519110 ‘
121315110117 , l 131
\
1
' | | 2: <= ‘
36: <= 1
NGBS

20: Man M

| 112131510111 |

‘ 1101 1213151011
nenom '
\ |
\ ‘
1121314110 1231011

2:3<=
—
<J
v

4 e

6:1M<= 10
*

ngun
\J
B:am 14

N
v

10: 2o N
Hz n

12: no <m

N

26

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
e \ertex = object.
e Edge = reference.

Roots. Objects known to be directly accessible by program (e.g.,
stack).

Reachable objects. Obijects indirectly accessible by program
(starting at a root and following a chain of pointers). / J\»

/J—’J/{KJ
\\)J/y
\J/J j_:
_
{j/d

N\

$100.
\

27

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

v ¢ Reachability.
e Path finding.
e Topological sort.

e Directed cycle detection.

Basis for solving difficult digraph problems.

e 2-gatisfiability.

e Directed Euler path.
e Strongly-connected components.

SIAM J. CoMmPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k\V + k,E + k,for some constants k, , k,, and k5, where Vis the number of vertices and E is the number
of edges of the graph being examined.

28

Breadth-first search In digraphs

Same method as for undirected graphs.

e Every undirected graph is a digraph (with edges in both directions).
e BFS is a digraph algorithm.

BFS (from source vertex s) +_I_>T_I I I I

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty: l 1
- remove the least recently added vertex v +' I
- for each unmarked vertex pointing from v: I
e >

add to queue and mark as visited. i I

Proposition. BFS computes shortest paths (fewest number of edges).

29

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source
vertices, find shortest path from any vertex in the set to each other

vertex.

Ex. Shortest path from {1,7,10} to 5is 7—=6—4—3—5.

@@ > O
5y
L s AN

30

Breadth-first search In digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say

Www.princeton. edu.

Solution. BFS with implicit graph.

BFS.
e Choose root web page as source s.
e Maintain a gueue Of Websites to explore.
e Maintain a set of discovered websites.
e Deqgueue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

31

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>() ; < queue of websites to crawl
SET<String> discovered = new SET<String>() ; < set of discovered websites

String root = "http://www.princeton.edu";

queue . enqueue (root) ; < start crawling from root website
discovered.add (root) ;

while ('queue.isEmpty())

{
String v = queue.dequeue() ;
StdOut.println(v) ;
In in = new In(v);

< read in raw html from next

website in queue

String input = in.readAll();

String regexp = "http:// (\\w+\\.)* (\\w+)";
Pattern pattern = Pattern.compile (regexp) ; <«
Matcher matcher = pattern.matcher (input) ; in website of form http://xxx.yyy.zzz
while (matcher.find()) [crude pattern misses relative URLs]

{

use regular expression to find all URLs

String w = matcher.group() ;
if ('discovered.contains (w))

{

discovered.add (w) ; < if undiscovered, mark it as discovered

and put on queue

queue.enqueue (W) ;

http://www.princeton.edu

» topological sort

33

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence
constraints,
iIn which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constr

0. Algorithms
1. Complexity Theory

. Artificial Intelligence

. Intro to CS

2
3
4. Cryptography
5

. Scientific Computing

tasks precedence constraint graph

feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

directed edges

topological order

35

Depth-first search order

public class DepthFirstOrder
{

private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder (Digraph G)
{

reversePost = new Stack<Integer>() ;

marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if ('marked[v]) dfs (G, v);

private void dfs (Digraph G, int v)
{
marked|[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);
reversePost.push(v) ;

public Iterable<Integer> reversePost ()
{ return reversePost; }

returns all vertices in
“reverse DFS postorder”

36

» strong components

37

Connected components vs. strongly-connected components

Analog to connectivity in undirected graphs.

v and w are connected if there is v and w are strongly connected if there is a directed
a path between v and w path from v to w and a directed path fromw to v

3 connected components 5 strongly-connected components

connected component id (easy to compute with DFS) strongly-connected component id (how to compute?)
O 1 2 3 4 5 6 7 8 9 10 11 12 O 1 2 3 4 5 6 7 8 910 11 12
cc[] O O 0 0O O O 1 1 1 2 2 2 2 scc[] 1 0 1 1 1 1 3 4 3 2 2 2 2
public int connected(int v, int w) public int stronglyConnected(int v, int w)
{ return cc[v] == cc[w]; } { return scc[v] == sccw]; }

constant-time client connectivity query constant-time client strong-connectivity query
38

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

m / VO'C * grea{'egfd

fox f:' .

Py
blue-gill fish

northein copperbelly
water snake

\\

earthworm

algae (magmftcd)

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component application: software modules

Software module dependency graph.
e \ertex = software module.
e Edge: from module to dependency.

SCORN
.:—\..} - o —s - ‘->
(oal1y % CULh
/‘—"‘\ M mc_- --_.")
g " ;a-".k_ Stz
— o ™ ——
| Gt wn'f)— -
TS i)
'y - _p(Hm!m\ _i_ nuuwnﬁb -
/mwriu'gr_n‘ ’& 1vmu44m.)_ m

Firefox Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.

40

Strong components algorithms: brief history

1960s: Core OR problem.
e Widely studied; some practical algorithms.
e Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

e Classic algorithm.

e |evel of difficulty: Algs4++.

e Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
e Forgot notes for lecture; developed algorithm in order to teach it!
e | ater found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
e Gabow: fixed old OR algorithm.
e Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

41

Kosaraju's algorithm: intuition
Reverse graph. Strong components in G are same as in G-,

Kernel DAG. Contract each strong component into a single vertex.

how to compute?

|dea. —
e Compute topological order (reverse postorder) in kernel DAG.

e Run DFS, considering vertices in reverse topological order.

first vertex is a sink
(has no edges pointing from it)

digraph G and its strong components kernel DAG of G (in reverse topological order)

)

42

