4.2 DIRECTED GRAPHS

- digraph API
- digraph search
- topological sort
- strong components

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

Road network

Vertex = intersection; edge = one-way street.

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

Combinational circuit

Vertex = logical gate; edge = wire.

WordNet graph

Vertex = synset; edge = hypernym relationship.

The McChrystal Afghanistan PowerPoint slide

Digraph applications

digraph	vertex	directed edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
WordNet	synset	hypernym
scheduling	task	precedence constraint
financial	bank	transaction
cell phone	person	placed call
infectious disease	person	infection
game	board position	legal move
citation	journal article	citation
object graph	object	pointer
inheritance hierarchy	class	inherits from
control flow	code block	jump

Digraph-processing: algorithms of the day

digraph API

- digraph search
- topological sort
- strong components

Digraph API

```
public class Digraph
                       Digraph(int V)
                                                          create an empty digraph with V vertices
                       Digraph(In in)
                                                            create a digraph from input stream
                void addEdge(int v, int w)
                                                                add a directed edge v \rightarrow w
Iterable<Integer> adj(int v)
                                                                 vertices pointing from v
                 int V()
                                                                   number of vertices
                 int E()
                                                                    number of edges
            Digraph reverse()
                                                                  reverse of this digraph
              String toString()
                                                                  string representation
```

```
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
  for (int w : G.adj(v))
    StdOut.println(v + "->" + w);
read digraph from input stream

print out each edge (once)
```

Digraph API


```
% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
:
11->4
11->12
12-9
```

```
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
  for (int w : G.adj(v))
    StdOut.println(v + "->" + w);
read digraph from input stream

print out each edge (once)
```

Set-of-edges digraph representation

Store a list of the edges (linked list or array).

		_
0	1	_
0	5	_
2	0	- 1
2	3	- 1
3	2	
3	5	
4	2	
4	3	
5	4	
6	0	
6	4	
6	8	
6	9	
7	6	П
7	9	
8	6	
9	10	
9	11	
10	12	
11	4	
11	12	
12	9	
		- 1

Adjacency-matrix digraph representation

Maintain a two-dimensional v-by-v boolean array; for each edge $v \rightarrow w$ in the digraph: adj[v][w] = true.

from

	το												
	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	1	0	0	0	0	0	0	0	0	0
3	0	0	1	0	0	1	0	0	0	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0	0
6	0	0	0	0	1	0	0	0	1	1	0	0	0
7	0	0	0	0	0	0	1	0	0	1	0	0	0
8	0	0	0	0	0	0	1	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	0
10	0	0	0	0	0	0	0	0	0	0	0	0	1
11	0	0	0	0	1	0	0	0	0	0	0	0	1
12	0	0	0	0	0	0	0	0	0	1	0	0	0

Note: parallel edges disallowed

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

Adjacency-lists graph representation: Java implementation

```
public class Graph
   private final int V;
   private final Bag<Integer>[] adj;
                                                      adjacency lists
   public Graph(int V)
                                                      create empty graph
      this.V = V;
                                                      with V vertices
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
          adj[v] = new Bag<Integer>();
   public void addEdge(int v, int w)
                                                      add edge v-w
      adj[v].add(w);
      adj[w].add(v);
   public Iterable<Integer> adj(int v)
                                                      iterator for vertices
      return adj[v]; }
                                                      adjacent to v
```

Adjacency-lists digraph representation: Java implementation

```
public class Digraph
   private final int V;
   private final Bag<Integer>[] adj;
                                                      adjacency lists
   public Digraph(int V)
                                                      create empty digraph
      this.V = V;
                                                      with V vertices
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
          adj[v] = new Bag<Integer>();
   public void addEdge(int v, int w)
                                                      add edge v→w
      adj[v].add(w);
   public Iterable<Integer> adj(int v)
                                                      iterator for vertices
      return adj[v]; }
                                                      pointing from v
```

Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from *v*.
- Real-world digraphs tend to be sparse.

representation	space	insert edge from v to w	edge from v to w?	iterate over vertices pointing from v?
list of edges	E	1	E	E
adjacency matrix	V	1	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

† disallows parallel edges

- digraph API
- digraph search
- topological sort
- strong components

Reachability

Problem. Find all vertices reachable from *s* along a directed path.

Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked vertices w pointing from v.

See <u>Depth-first search in digraphs demo</u>

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```
public class DepthFirstSearch
   private boolean[] marked;
                                                           true if path to s
   public DepthFirstSearch(Graph G, int s)
                                                           constructor marks
      marked = new boolean[G.V()];
                                                           vertices connected to s
      dfs(G, s);
   private void dfs(Graph G, int v)
                                                           recursive DFS does the work
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
   public boolean visited(int v)
                                                           client can ask whether any
      return marked[v]; }
                                                           vertex is connected to s
```

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [substitute Digraph for Graph]

```
public class DirectedDFS
   private boolean[] marked;
                                                           true if path from s
   public DirectedDFS(Digraph G, int s)
                                                           constructor marks
      marked = new boolean[G.V()];
                                                           vertices reachable from s
      dfs(G, s);
   private void dfs(Digraph G, int v)
                                                           recursive DFS does the work
      marked[v] = true;
       for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
   public boolean visited(int v)
                                                           client can ask whether any
      return marked[v];
                                                           vertex is reachable from s
```

Reachability application: program control-flow analysis

Every program is a digraph.

- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

roots

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- Reachability.
 - Path finding.
 - Topological sort.
 - Directed cycle detection.

Basis for solving difficult digraph problems.

- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited. Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex pointing from v: add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges).

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. Shortest path from $\{1, 7, 10\}$ to 5 is $7 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 5$.

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say

www.princeton.edu.

Solution. BFS with implicit graph.

BFS.

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a set of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?

Bare-bones web crawler: Java implementation

```
Queue<String> queue = new Queue<String>();
                                                                 queue of websites to crawl
SET<String> discovered = new SET<String>();
                                                                 set of discovered websites
String root = "http://www.princeton.edu";
queue.enqueue(root);
                                                                 start crawling from root website
discovered.add(root);
while (!queue.isEmpty())
   String v = queue.dequeue();
                                                                 read in raw html from next
   StdOut.println(v);
                                                                 website in queue
   In in = new In(v);
   String input = in.readAll();
   String regexp = \frac{(\langle w+ \rangle) * (\langle w+ \rangle)}{}
                                                                use regular expression to find all URLs
   Pattern pattern = Pattern.compile(regexp); 
                                                                in website of form http://xxx.yyy.zzz
   Matcher matcher = pattern.matcher(input);
                                                                 [crude pattern misses relative URLs]
   while (matcher.find())
       String w = matcher.group();
       if (!discovered.contains(w))
                                                                 if undiscovered, mark it as discovered
          discovered.add(w);
                                                                 and put on queue
          queue.enqueue(w);
```

- digraph API
- digraph search
- ▶ topological sort
- strong components

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constr

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing

tasks

precedence constraint graph

feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

directed edges

DAG

topological order

Depth-first search order

```
public class DepthFirstOrder
{
   private boolean[] marked;
   private Stack<Integer> reversePost;
   public DepthFirstOrder(Digraph G)
      reversePost = new Stack<Integer>();
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v]) dfs(G, v);
   private void dfs(Digraph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
      reversePost.push(v);
   public Iterable<Integer> reversePost()
   { return reversePost; }
```

returns all vertices in "reverse DFS postorder"

- digraph API
- digraph search
- topological sort
- strong components

Connected components vs. strongly-connected components

Analog to connectivity in undirected graphs.

v and w are connected if there is a path between v and w

v and w are strongly connected if there is a directed path from v to w and a directed path from w to v

connected component id (easy to compute with DFS)


```
public int connected(int v, int w)
   return cc[v] == cc[w]; }
```

constant-time client connectivity query

strongly-connected component id (how to compute?)

```
public int stronglyConnected(int v, int w)
   return scc[v] == scc[w];
```

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.

Firefox

Internet Explorer

Strong component. Subset of mutually interacting modules. Approach 1. Package strong components together.

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju's algorithm: intuition

Reverse graph. Strong components in G are same as in G^R .

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

digraph G and its strong components

kernel DAG of G (in reverse topological order)