4.2 DIRECTED GRAPHS

- digraph API
- digraph search
- topological sort
- strong components

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

Road network

Vertex $=$ intersection; edge $=$ one-way street.

Political blogosphere graph

Vertex $=$ political blog; edge $=$ link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex $=$ bank; edge $=$ overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

Combinational circuit

Vertex = logical gate; edge $=$ wire.

WordNet graph

Vertex $=$ synset; edge $=$ hypernym relationship.

The McChrystal Afghanistan PowerPoint slide

Afghanistan Stability / COIN Dynamics

$\not /=\underset{\text { Delay }}{\text { Significant }}$		Population/Pepular Support Infastruetures. Economy, \& Servies Government Afghanistan Security Forees Insurgents Criese and Noreotits Coalition Fortes \& Actions Physical Environment

WORKING DRAFT - V3

Digraph applications

digraph	vertex	directed edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
WordNet	synset	hypernym
scheduling	task	bank
cell phone	person	person
infectious disease	pransaction	
game	board position	placed call
citation	journal article	legal move
object graph	object	citation
inheritance hierarchy	class	pointer
control flow		code block

Digraph-processing: algorithms of the day

single-source
reachability

> DFS
transitive closure

DFS
(from each vertex)
topological sort (DAG)

DFS
strong components

Kosaraju
DFS (twice)
, digraph API

Digraph API

```
public class Digraph
```



```
read digraph from input stream
print out each
edge (once)
```

```
```

In in = new In(args[0]);

```
```

In in = new In(args[0]);
Digraph G = new Digraph(in);
Digraph G = new Digraph(in);
for (int v = 0; v < G.V(); v++)
for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
for (int w : G.adj(v))
StdOut.println(v + "->" + w);

```
```

 StdOut.println(v + "->" + w);
    ```
```


Digraph API

tinyDG.txt

$$
\begin{aligned}
& \text { \% java Digraph tinyDG.txt } \\
& 0->5 \\
& 0->1 \\
& 2->0 \\
& 2->3 \\
& 3->5 \\
& 3->2 \\
& 4->3 \\
& 4->2 \\
& 5->4 \\
& \vdots \\
& 11->4 \\
& 11->12 \\
& 12-9
\end{aligned}
$$

\% java Digraph tinyDG.txt
$0->5$
$0->1$
$2->0$
$2->3$
$3->5$
$3->2$
$4->3$
$4->2$
5->4
11->4
11->12
12-9
In in = new In(args[0]);
In in = new In(args[0]);
Digraph G = new Digraph(in);
Digraph G = new Digraph(in);
for (int v = 0; v < G.V(); v++)
for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
for (int w : G.adj(v))
StdOut.println(v + "->" + w);
StdOut.println(v + "->" + w);

Set-of-edges digraph representation

Store a list of the edges (linked list or array).

| 0 | 1 |
| ---: | ---: |
| 0 | 5 |
| 2 | 0 |
| 2 | 3 |
| 3 | 2 |
| 3 | 5 |
| 4 | 2 |
| 4 | 3 |
| 5 | 4 |
| 6 | 0 |
| 6 | 4 |
| 6 | 8 |
| 6 | 9 |
| 7 | 6 |
| 7 | 9 |
| 8 | 6 |
| 9 | 10 |
| 9 | 11 |
| 10 | 12 |
| 11 | 4 |
| 11 | 12 |
| 12 | 9 |
| | |

Adjacency-matrix digraph representation

Maintain a two-dimensional v-by-v boolean array; for each edge $\mathrm{v} \rightarrow \mathrm{w}$ in the digraph: adj $[\mathrm{v}][\mathrm{w}]=$ true.

Note: parallel edges disallowed

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

Adjacency-lists graph representation: Java implementation

```
public class Graph
{
    private final int V;
    private final Bag<Integer>[] adj;
    public Graph(int V)
    {
        this.v = v;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < v; v++)
            adj[v] = new Bag<Integer>();
    }
    public void addEdge(int v, int w)
    {
        adj[v].add(w);
        adj[w].add(v);
    }
    public Iterable<Integer> adj(int v)
    { return adj[v]; }
}
```


Adjacency-lists digraph representation: Java implementation

```
public class Digraph
{
    private final int V;
    private final Bag<Integer>[] adj;
    public Digraph(int V)
    {
        this.v = v;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < v; v++)
            adj[v] = new Bag<Integer>();
    }
    public void addEdge(int v, int w)
    {
        adj[v].add(w);
    }
    public Iterable<Integer> adj(int v)
    { return adj[v]; }
}
```


Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.
huge number of vertices,
small average vertex degree

| representation | space | insert edge
 from v to w | edge from v to w? | iterate over vertices pointing from v ? |
| :---: | :---: | :---: | :---: | :---: |
| list of edges | E | 1 | E | E |
| adjacency matrix | V | 1 | 1 | V |
| adjacency lists | $\mathrm{E}+\mathrm{V}$ | 1 | outdegree(v) | outdegree(v) |

† disallows parallel edges
, digraph search

Reachability

Problem. Find all vertices reachable from s along a directed path.

Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)
Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.

- See Depth-first search in digraphs demo

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```
public class DepthFirstSearch
{
    private boolean[] marked;
    public DepthFirstSearch(Graph G, int s)
    {
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    private void dfs(Graph G, int v)
    {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }
    public boolean visited(int v)
    { return marked[v]; }
}
```


Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [substitute Digraph for Graph]

```
public class DirectedDFS
{
    private boolean[] marked;
    public DirectedDFS(Digraph G, int s)
    {
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    private void dfs(Digraph G, int v)
    {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }
    public boolean visited(int v)
    { return marked[v]; }
}
```


Reachability application: program control-flow analysis

Every program is a digraph.

- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
\checkmark • Reachability.

- Path finding.
- Topological sort.
- Directed cycle detection.

Basis for solving difficult digraph problems.

- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components. $k_{1} V+k_{2} E+k_{3}$ for some constants k_{1}, k_{2}, and k_{3}, where V is the number of vertices and E is the number of edges of the graph being examined.

Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex pointing from v: add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges).

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. Shortest path from $\{1,7,10\}$ to 5 is $7 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 5$.

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.

BFS.

- Choose root web page as source s.
- Maintain a queue of websites to explore.
- Maintain a set of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).
Q. Why not use DFS?

Bare-bones web crawler: Java implementation

```
Queue<String> queue = new Queue<String>();
SET<String> discovered = new SET<String>();
String root = "http://www.princeton.edu";
queue.enqueue (root);
discovered.add(root);
while (!queue.isEmpty())
{
    String v = queue.dequeue();
    StdOut.println(v);
    In in = new In(v);
    String input = in.readAll();
    String regexp = "http://(\\w+\\.)*(\\w+)";
    Pattern pattern = Pattern.compile(regexp);
    Matcher matcher = pattern.matcher(input);
    while (matcher.find())
    {
        String w = matcher.group();
        if (!discovered.contains(w))
        {
            discovered.add(w);
            queue.enqueue(w);
        }
    }
}
```

> topological sort

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex $=$ task; edge $=$ precedence constr
0. Algorithms

1. Complexity Theory
2. Artificial Intelligence
3. Intro to CS
4. Cryptography
5. Scientific Computing
tasks

precedence constraint graph

feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

Depth-first search order

```
public class DepthFirstOrder
{
    private boolean[] marked;
    private Stack<Integer> reversePost;
    public DepthFirstOrder(Digraph G)
    {
        reversePost = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }
    private void dfs(Digraph G, int v)
    {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w) ;
            reversePost.push(v);
    }
    public Iterable<Integer> reversePost()
    { return reversePost; }
}
returns all vertices in "reverse DFS postorder"
```

> strong components

Connected components vs. strongly-connected components

Analog to connectivity in undirected graphs.
v and w are connected if there is
a path between v and w

connected component id (easy to compute with DFS)

$\operatorname{cc}[]$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

strongly-connected component id (how to compute?)
$\operatorname{scc}\left[\begin{array}{llllllllllrrr}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\\right.$\cline { 2 - 10 }\end{array}

```
public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }
```

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.

Firefox

Internet Explorer

Strong component. Subset of mutually interacting modules. Approach 1. Package strong components together.

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju's algorithm: intuition

Reverse graph. Strong components in G are same as in G^{R}.

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

digraph G and its strong components

kernel DAG of G (in reverse topological order)

