4.1 UNDIRECTED GRAPHS

» graph API

» depth-first search

» breadth-first search

» connected components
» challenges

Algorithms, 4 . Robert Sedgewick and Kevin Wayne . Copyright © 2002-2012 . March 27,2014 5:11:51 PM

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

e Thousands of practical applications.

* Hundreds of graph algorithms known.

* |nteresting and broadly useful abstraction.

e Challenging branch of computer science and discrete math.

IH I
/
/

ooooo o © CED it

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex
cycle o edge l

length]; \ l

path of
« length 4

vertex of

degree 3

V]

N connected
components

Some graph-processing problems

Path. Is there a path between s and ¢ ?
Shortest path. What is the shortest path between s and ¢ ?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

» graph API

Graph representation

Graph drawing. Provides intuition about the structure of the graph.
Caveat. Intuition can be misleading.

two drawings of the same graph

Graph representation

Vertex representation.
e This lecture: use integers between 0 and - 1.
e Applications: convert between names and integers with symbol table.

Anomalies.

self-loop parallel

/] edges
b
S

Graph API

public class Graph

Graph (int V) create an empty graph with V vertices
Graph (In in) create a graph from input stream
void addEdge (int v, int w) add an edge v-w
Iterable<Integer> adj (int v) vertices adjacent to v
int V() number of vertices
int E () number of edges
String toString () string representation
In in = new In(args[0]); p read graph from
Graph G = new Graph(in) ; input stream

for (int v = 0; v < G.V(); v++) _
print out each

for (int w : G.adj(v)) <
StdOut.println(v + "-" + w);

edge (twice)

Graph APIl: sample client

Graph input format.

tinyG. txt

V\13 E % jJava Test tinyG. txt
13 < 0-6
05 Q 0-2
4 3
0 1 (6) T
9 12 L@ 2:2
6 4
5 4 9’0 9\@ 2-0
0 2 3-5
11 12 e @ @ 3-4
9 10
06 12-11
; il 12-9
5 3

In in = new In(args[0]); read graph from
Graph G = new Graph(in) ; input stream

for (int v = 0; v < G.V(); v++) _
print out each

for (int w : G.adj(v)) <
StdOut.println(v + "-" + w);

edge (twice)

Typical graph-processing code

public static int degree(Graph G, int v)

{
int degree = 0;
compute the degree of v for (int w : G.adj(v)) degree++;
return degree;
}

public static int maxDegree(Graph G)

{
int max = 0;
_ for (int v = 0; v < G.VQ; v++)
compute maximum degree if (degree(G, v) > max)
max = degree(G, V);
return max;
}

public static double averageDegree(Graph G)
compute average degree { return 2.0 * G.EQ / G.VO: 1}

public static int numberOfSelfLoops(Graph G)
{

int count = 0;
for (int v =0; v < G.VQ; v++)
for (int w : G.adj(v))
if (v == w) count++;
return count/2; // each edge counted twice

count self-loops

10

Possible Graph Representations:

» Set of edges
» Adjacency matrix

» Adjacency lists

On what basis to choose?

Let’s look at some example to gain perspective.

11

Protein-protein interaction network

o 2 ..J
") C.L.Ooo o'o..hu
000- - e, \
o O ho
.096.’ ® .
2 mw %J‘ R
o ° ..w ’
oaoooooo e
opte .
0. \.O
%
o..moo... 3
gl
5
LA |
o 5 o
.... p
o
o
Ou.

Reference: Jeong et al, Nature Review | Genetics

12

The Internet as mapped by the Opte Project

IERIT |

Jo \ 3

N ‘ 5 - 2

2 3 <

X NG s\
—s -

¥ M5 230010

W M5 10

//en.wikipedia.org/wiki/Internet

http

10 million Facebook friends

facebook

"Visualizing Friendships" by Paul Butler

The evolution of FCC lobbying coalitions

.Fndwh'mm&kmdam Vermont PS8 . 00 Tel. Assooatca .Ccnso&h\ed Comparves
.KCPR . Viermont DPS .W
= v&“ HaPSC yrs®
H:mefdedm B Nk \pr *
PaT ~ Nt
lﬁnodaphnw Indiara URC
Rural Uslives Service ®
. USDA Montara PSC
N Pa
Lincolrille Networls
®. Oxdord Telephone
AC c .
® Vimal Geosatelite
L]
Global Crossing
Hot Springs Telephone 'Y
@ Ronan Telephone TW LS
pulver com G ’! "W ot
* Google . m A A A
- §ioe at
m- r R S .
.Epi;x < | l !1\:“
' P'.td. v-/_‘/

S8C
TeasOPC @ /
CFA o
ﬂ Lol 3
o
Carzens Telephore
\.Knododeqhone }
Vierzon
.
y i
ST T edem " GunCom Wareless ®. DS Telecom
L
(=} “ A7 K cellCo) o Pecple's Tdephone
. VoreSream Wireless ~ M ° . Cazscade Utines
Tekstar Communications © Bt y: Mothonm:m 4 Buan-de-phono
s Aventure ERTA
- - -
: Glcbal Conference Parners . v ASTCO A, idaho Usiies
.FB_Nlndan N . Easerbrooka Calutar el xJ n'rA Q\. mTA M«rm .Omow
e Confestincing lowa Neswork Servicas Muctweest Worehess ."'"’" -#MYW s - Humbokdt Telephone
Telephore g Td c"‘"’ Slephcrd jechone *
Baraga _ Blve Cass Communications bnTd, G : Great Lakes Commurications © .. Blonaar Talaphcne !
o \'QW .Tdsapo Communicascns v SureWest G\\.Onﬂ’d - 'm Telephone

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

15

http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm

Graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

16

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

[

H O W O J & & W Ww o O O O

o O 01 & O U D M

R R R R
N N R O ®

17

Adjacency-matrix graph representation

Maintain a two-dimensional V-by-JV boolean array;

for each edge v—w in graph: adj[v] [w]

true.

adj[w] [v] =

two entries

for each edge

12

11

10

10

18

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

adj[]

0
1
2
3
4
5
6
7
8
9

=
o

=
=

=
N

/
\
\

6 2 1 5
0
Bag objects
0
5 4
5 6 3
3 4 0
0 4

representations
of the same edge

10

12

19

Graph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices adjacent to v.
* Real-world graphs tend to be sparse.

AN

huge number of vertices,

small average vertex degree

sparse (E=200) dense (E=1000)

Two graphs (V = 50)

20

Graph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices adjacent to v.
* Real-world graphs tend to be sparse.

AN

huge number of vertices,

small average vertex degree

: edge between iterate over vertices
representation add edge .
v and w? adjacent to v?
list of edges E 1 E E
adjacency matrix Vv] * 1 Vv
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges

21

Adjacency-list graph representation: Java implementation

public class Graph
{

private final int V;
private Bag<Integer>[] adj;

public Graph (int V)

{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>() ;
}

public void addEdge (int v, int w)
{

adj[v] .add (w) ;

adj[w] .add (v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

adjacency lists
(using Bag data type)

create empty graph

with v vertices

add edge v-w

(parallel edges allowed)

iterator for vertices adjacent to v

22

Bag APT (Chapter 1)

Main application. Adding items to a collection and iterating
(when order doesn't matter).

marbles\
public class Bag<Item> implements Iterable<Item>
add (@)
Bag () create an empty bag

void add(Item x) insert a new item onto bag ® ..

int size() number of items in bag ~dd(@®)

Iterable<Item> iterator () iterator for all items in bag
|
900
for (Marble m : bag)
00

<

process each marble m
(in any order)

Implementation. Stack (without pop) or queue (without dequeue).

23

» depth-first search

24

Maze exploration

Maze graphs.
* \ertex = intersection.
 Edge = passage.

intersection passage

Goal. Explore every intersection in the maze.

25

Trémaux maze exploration

Algorithm.
* Unroll a ball of string behind you.

 Mark each visited intersection and each visited passage.
* Retrace steps when no unvisited options.

26

Trémaux maze exploration

Algorithm.
e Unroll a ball of string behind you.

* Mark each visited intersection and each visited passage.
* Retrace steps when no unvisited options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur;

Ariadne instructed Theseus to use a ball of string to find his way back out.

Claude Shannon (with Theseus mouse)

27

Maze exploration

28

Maze exploration

29

Warning: Don’t visit twice!

An' here | sit so patiently

Waiting to find out what price

You have to pay to get out of

Going through all these things twice.

Bob Dylan
“Stuck Inside Of Mobile With The Memphis Blues Again”

30

Depth-first search

Goal. Systematically search through a graph.
ldea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.

e Find all vertices connected to a given source vertex.
* Find a path between two vertices.

Design challenge. How to implement?

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

e Create a craph Object.

e Pass the craph to a graph-processing routine, e.g., Paths.
* Query the graph-processing routine for information.

public class Paths

Paths (Graph G, int s)

boolean hasPathTo (int wv)

find paths in G from source s

is there a path from s to v?

Iterable<Integer> pathTo (int v) path from s to v, null if no such path

Paths paths = new Paths (G, s);
for (int v = 0; v < G.V(); v++)
if (paths.hasPathTo(v))

StdOut.println (v) ; <

print all vertices

connected to s

32

Depth-first search demo

33

Depth-first search

Goal. Find all vertices connected to s (and a path).
ldea. Mimic maze exploration.

Algorithm.

e Use recursion (ball of string).

* Mark each visited vertex (and keep track of edge taken to visit it).
* Return (retrace steps) when no unvisited options.

Data structures.
® boolean[] marked t0 mark visited vertices.
e int[] edgeTo t0 keep tree of paths.
(edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search

public class DepthFirstPaths

{ marked[v] = true
private boolean[] marked; < if v.connected to s
private int[] edgeTo; < edgeTolv] = previous vertex
private int s; on path from s tov

public DepthFirstSearch (Graph G, int s)

{
< initialize data structures
dfs (G, s); < find vertices connected to s
}
private void dfs(Graph G, int v) < recursive DFS does the work
{

marked|[v] = true;

for (int w : G.adj(v))
if ('marked[w])
{

dfs (G, w);
edgeTo[w] = v;

35

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees.

Pf.
e Correctness: souzee set of marked
- if w marked, then w connected to s (why?)
- if w connected to s, then w marked
(if w unmarked, then consider last edge
on a path from s to w that goes from a
marked vertex to an unmarked one) set of

unmarked

vertices

no such edge
<« can exist

* Running time: each vertex
connected to s is visited once.

36

Depth-first search properties

Proposition. After DFS, can find vertices connected to s in constant time and can
find a path to s (if one exists) in time proportional to its length.

Pf. edgeTo[] IS a parent-link representation of a tree rooted at s.

public boolean hasPathTo (int v)
{ return marked|[v]; }

public Iterable<Integer> pathTo (int v)

{
if ('hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>() ;
for (int x = v; x !'= s; x = edgeTo[x])

path.push (x) ;
path.push(s) ;
return path;

Depth-first search application: preparing for a date

PREPPRING FOR A DATE:
OKAY, WHAT KINDS OF
WHAT SITUATIONS
MIGHT T PREPPRE RR? 1) A) SNAKEBITE
1) MEDICAL EMERGENCY B) LIGHTNING STRIKE
2) DANCING ©) FALLFRM CHAR
L D FOD TROBPENSIVE &

)
0

D:

A

~ A~V
}VWL*ﬂ04SNQN¥:;;E.J

EMERGENCIES CANHAPPEN? DANGEROUS? LET'S SEE...

)A)a) CORN SNAKE Mfm

b) GARTER SNAKE ?
R i
OO

THE RESEARCH (OMPARING

SNPKE VENOMS 15 SCATTERED
PO WCONSISTENT TLL MAKE
A SPREADSHEET To ORGANIZE IT.

‘1¢\A~}~/L\J~“},A.A/\au
O

O

xkcd

http://xkcd.com/761/

\

TMHERETPKK. BY Dy, THE INUAND
YOUUR YouRE TAIPAN HAS THE DBACLIEST
NOT DRESSED?

IS

VENOM OF ANY SNAKE'!
]

T REALY NEED To SToP

USING DEPTH-FIRST SEARCHES.

38

» breadth-first search

39

Breadth-first search demo

40

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

BFS (from source vertex s) \[\// i\

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty: .

- remove the least recently added vertex v

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

~

Intuition. BFS examines vertices in increasing distance from s.

41

Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s
In a connected graph in time proportional to £ + V.

PT.

e Correctness: queue always consists of zero or more vertices of distance & from
s, followed by zero or more vertices of distance £ + 1.

* Running time: each vertex connected to s is visited once.

standard drawing dist =0 dist =1 dist = 2

42

Breadth-first search

public class BreadthFirstPaths

{

private boolean|[] marked;
private boolean|[] edgeTol[];
private final int s;

private void bfs (Graph G, int s)
{
Queue<Integer> g = new Queue<Integer>() ;
q.enqueue (s) ;
marked[s] = true;
while (!'q.isEmpty())
{
int v = g.dequeue() ;
for (int w : G.adj(v))
{
if ('marked[w])
{
q.enqueue (W) ;
marked[w] = true;
edgeTo[w] = v;

43

Breadth-first search application: routing

Fewest number of hops in a communication network.

SCOoTTY

»
TEXAS

“w SATELLITE CIRCUIT
QO wp

O Twe

& PLURIBUS iMP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE 1MP NAMCS, NOT INECESSARILY) HOST NAMES

ARPANET, July 1977

44

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

fanNno

The Oracle of Bacon
]‘ - | > N [' o | e -+ .' .‘ é € p) reww O il eofbaton ot Bis meviel nkilg

game=04Anname «Kevine Baco O &

2] TheCumis | woe of Mucic COS 126 FOR ACM Awards Wang 518 NcCuadhy | Hemepage Stocks COSIZEFO? TPN BSS (1742) Fachaten

THE ORACLE
OF BACON

Help

Credits

How it Works
Contact Us
Other games »

http://oracleofbacon.org

Buzz Mauro

Sweet Dreams (2005) J
Tatana Ramirez

Interior de un silencio, El (2005) |

Andres Suarez
Carlita's Secret (2004) |
Paula Lemes ()

FrostNixon (2008)

Kevin Bacon

Nnd bnik More options > >

Uma Thurman

Be Cool (2005)
Scott Adsit
The Informant! (2009)

Matt Damon

-
Lochup

SixDegrees iPhone App

45

Kevin Bacon graph

Include a vertex for each performer and for each movie.
Connect a movie to all performers that appear in that movie.
Compute shortest path from s = Kevin Bacon.

— Caligola

John
Gielgud

\ /

Glenn The Stepford
Close Wives

Portrait
of a Lady

;o

Nicole
Kidman

Patrick Di
Allen for

/

The Eagle
Has Landed

/ \

al M Grace
Murder Kelly
High
—JTo Catch [— = N;cgm
a Thief

/N

— Murder on the P~ U
Orient Express 7
Cold Donald h
/ \ Mountain Sutherland athleen __|Joe Versus|
7 \ Quinlan the Volcano
/ 7 [\
\
An American John Animal \
Hamlet | — Haunting Belushi House perfbrnaer
== Apollo 13— vertex
/ | Vernon / \ 7 N\ .
Dobtcheff The
Woodsman Kevin
Bacon Tom
' N Bi1l Hanks
movie | Wild \ Paxton
vertex " — ! - :
—_ d Things The River N /
Jude VR B = wild [—
e Da
\ 7|\ [bl Vinci Code
P~ Mery1l
— Enigma Streep Serretta
7 Kate 1\ Wilson
Winslet
1 1 7

Eternal Sunshine
of the Spotless |fmm
Mind

T7 1T

. . — Yves
Titanic
| L Aubert Shane
/ N Zaza

46

Breadth-first search application: Erdos numbers

- _ YLl
B 5 B wWEYE XTI
' PLE
i CFrsneian (3 vor:
{ CAKTE B ETEM SemmaRsELl
i —vz—,\ 5 PPy FL T IETA
vt RALLIW
AR YA Lk o) (COvAIN
: P, MALWIL L IGK
: LRUNG
por Sa LEaen 7eir) (Hicasar
-t'* FisRinaN QoLYRED
e anrl ' S104KE T THeAALEA) Vou NEIMAni
b
: ' .ﬁfa“* AVERFA oy, '
"Besa) Sxandosl }f (RevamIN (HAT T A e ""'“")____ LaGARiA (FR2nzey)
) e 3 FAGSRES : ' i 2
Sk ' \i AT spmeu j L DvRR L e Y S LLLE \ A3
@€ G303 ! AW ; n‘“, . LaALNIA nESITIR, = . —
_s:;w.a:u} 3) = i
{ . g T " : AIENT) Prm i
?W?"‘ Lwrds 7 53?.‘5 ‘:‘ i w“!fi } BTES=ToTH Hea83 GsADs T
, ¢~fﬁmv pornitniiL, : M, SatrcH
| L, (x.srg.mz 0’*\‘\\" \ TN : \] Fraesesne —
E / I ¢ / '!‘ RS pe— TinNesit) fruses
P) - >
: BLEIFHAM N X WHITE
Hanl » == By onst ;
/j : f{mr#a&d:g.-., . \‘(2 - i
f l"t s 2 v
// Sk vexs sy /’ s, g LW REHMINETR

{ r: uu Lixml»";} Wi B20wia

o
A S P A Y D BoNOY A qunry =
B ss.»,.s;:?‘ ku._nj“ ‘If oo N = : : 2
E’ v-u—w e ,3 J e s . 2 T T, Finwknd GRLEME
! ?‘5.1 uk.-tl (-9-5 ot el -.",.-'-:.- . g i "_. : - — — | doretidd g o — E»}
P e i sAS) A C Sy JeHwENE N A WAT KIS &
{ imf:sn.«s Ty 2 AA W (BoELS " . i = e Peoinsed =
| Al 4 Jer : ?7—" / o g RELY. &
(snu (:fuuguaa{;“] ..N% q E o weterisy (CHvATaLeY .
AV ..---:"“m == Z7H G =~ (Bioem 8
il T_'." ' oy ¥ s, ti#‘ " ' oy EE#L ,’ |
V (R aly \{Tarrady o= . e
Lk LT - HUANG PALMER MEDETHIBAL %
Lo f;wz.f\ @ Aol 3
A ,..,..,....a,“ L3 fm L f = GLIT, WeTEE) WY A parees /8 g
9-» fx f""‘-"""*‘w'— v = : -

e l i (i rgaddiry : (. tarse FEUMIEY) A o
ﬁ 5 ,_....-;M?A 3 SiL8AN f £Ei5) = o

. cmt.r - P

- PoiiAk /? : L

/Q‘\._“ -

Y Mﬁxve n / .
w\l‘ M(u@y\’b““’ YV e A
Nrm : ravss) Al
b"d# Lidd T LE LYY - “ngpees e | s i
,?“3 AN B2LE 43 il

;w gaaty .~ 3""’“ -

u_*:_:_.,,.,-m' L":Ha LAX J,—«-@

Ww&-m—. S

: (18508 -
}:'7'»1!’*) 7«@"“@ G
Ll fmesen) (L2 srui;(uwmaw
!:e..u-ﬂ‘
s >

: SWM: -
: "Ha-’::u:
SiLE

| [

TR RN mm;/’{ __/ /@3

!—ﬂ'“" - AT
‘u.f"‘ oy """} m & d"f B ommsinnasess
el b!sﬂ “Eag erf‘_.-!a p——— '_/
W—“’ Ty
[arETizg ~ t

hand-drawing of part of the Erdos graph by Ron Graham

» connected components

48

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w ?
In constant time.

public class CC

CC (Graph G) find connected components in G
boolean connected (int v, int w) are v and w connected?
int count () number of connected components

int id(int v) component identifier for v

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

49

Connected components

The relation "is connected to" is an equivalence relation:

e Reflexive: vis connected to v.

e Symmetric: if v is connected to w, then w is connected to v.

e Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

id[v]

W 0 JdJ o 1 dWDN KR O

=
o

3 connected components

B
N B

Remark. Given connected components, can answer queries in constant time.

o

N MM DNV PRPR R OOOOOOoO

50

Connected components

Def. A connected component is a maximal set of connected vertices.

. -: I_._".oool II;» . o'ﬁocI
LI o oiL:oao I L Ii }_.
!

._.I._.
111 ol 1*5

; | iLﬁIiHJ
‘ I..L’._;;I“. HHRRL RS —3
AR
e . ! + 00 08 § O

I S]
"~ o
I8

+ G G
s
A
o
o, 1

) & -
]

:

loeoll
HHHU-:I
T, T
Sisgfatels
!

- I.'(P'O

— "}‘4
IICH.“
Q—I’_% “Io

LL

&
i
r

)
i
i
1

.
i

I’Fi
L
i
* L]
L] L I J L - *
e
&,
- * * 2 9 I’—‘
L] - L *-*9
|
— 4 > II.{). :
L T(D . -
400041 >
.
* . -
:S‘L{—:

I.
11
.
. - (3
* 00—1—0
> - *
o

63 connected components

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all R
vertices discovered as part of the same component. V13 =
13 -~

4 3

01

9 12

6 4

(0) 5 4
O® 0 2
anaa 11 12
9 10

06

S ORI N\ g
(5) (112 -

52

Connected components demo

53

Finding connected components with DFS

public class CC
{

private boolean marked[];
private int[] id; <

private int count;

public CC(Graph G)

{
marked = new boolean[G.V()];
id = new int[G.V ()],
for (int v = 0; v < G.V(); v++)
{
if ('marked[v])
{
dfs (G, v); <
count++;
}
}
}

public int count ()

public int id(int v) <
private void dfs (Graph G, int v)

id[v] = id of component containing v

number of components

run DFS from one vertex in

each component

see next slide

54

Finding connected components with DFS (continued)

public int count()

{ return count; } < number of components
1{>ub11<: 1nt- :?(;‘nt ‘}') < id of component containing v
return id[v];
private void dfs (Graph G, int v)
{
k = ; . . :
r.nar sdliwl true all vertices discovered in
id[v] = count; <%

same call of dfs have same id

for (int w : G.adj(v))
if ('marked[w])
dfs (G, w);

55

Connected components application: study spread of STDs

1o
2 “o¥e
W T R '
he X4y »
= oot S e G P . o B
- o e~
s a3, TR i B
N g
v gl . o Oy
¢ 3 :
R, T
A4y X — E

il @ Male
>~— Female

-

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of
adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

56

» challenges

57

Graph-processing challenge 1

Problem. Is a graph bipartite?

0
How difficult? (1) (2) (¢
* Any Villanova CS student could do it. e o
* Need to be a typical diligent CSC 2053 student.

5

e Hire an expert.
e |ntractable.
* No one knows.
* |mpossible.

& b DM PR OO O O
o O d W WOOUDND R

= B DNV R O O OO

o U1 b W WoOoOLOLIDMN KL

Graph-processing challenge 2

Problem. Find a cycle.

How difficult?

* Any Villanova CS student could do it.

* Need to be a typical diligent CSC 2053 student.
e Hire an expert.

e |ntractable.

* No one knows.

* |mpossible.

& b DM PR OO O O

o U1 & W WO OULIND B

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?

* Any Villanova CS student could do it.

* Need to be a typical diligent CSC 2053 student.
e Hire an expert.

e |ntractable. 0-1-2-3-4-2-0-6-4-5-0
* No one knows.

* |mpossible.

_ b W dMNDMNMDM R OO OO

o U1 &b WNMNOYOOGIDND R

Bridges of Konigsberg

The Seven Bridges of Konigsberg. [Leonhard Euler 1736]

“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these

bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once.”

k_;_,;'fw""’"‘“‘*« B
Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).

61

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?

* Any Villanova CS student could do it.

* Need to be a typical diligent CSC 2053 student.
e Hire an expert.

e |ntractable. 0-5-3-4-6-2-1-0
* No one knows.

* |mpossible.

= b W W bR OO OO
o U1 o1 O NOYOIDD B

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

* Any Villanova CS student could do it.

* Need to be a typical diligent CSC 2053 student.
e Hire an expert.

e |ntractable.

* No one knows.

* |mpossible.

= W Ww o O O O

o U1 U1 O UMD R

o W NPRKFkrPELPR OOO
o & b O oy O b

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

* Any Villanova CS student could do it.

* Need to be a typical diligent CSC 2053 student.
e Hire an expert.

e |ntractable.

* No one knows.

* |mpossible.

= W Ww o O O O

o U1 U1 O UMD R

