4.1 Undirected Graphs

- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.

Graph terminology

Path. Sequence of vertices connected by edges.

Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

Some graph-processing problems

Path. Is there a path between s and t? Shortest path. What is the shortest path between s and t?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?

Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?

MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges? Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

graph API

- depth-first search
- breadth-first search
- connected components
- challenges

Graph representation

Graph drawing. Provides intuition about the structure of the graph. Caveat. Intuition can be misleading.

Graph representation

Vertex representation.

- This lecture: use integers between 0 and V-1.
- Applications: convert between names and integers with symbol table.

Anomalies.

Graph API

```
public class Graph
                            Graph(int V)
                                                    create an empty graph with V vertices
                             Graph (In in) create a graph from input stream
       void
                       addEdge(int v, int w)
                                                            add an edge v-w
Iterable<Integer>
                              adj(int v)
                                                          vertices adjacent to v
                                 V()
        int
                                                           number of vertices
                                 E()
        int
                                                            number of edges
      String
                              toString()
                                                          string representation
```

```
In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);</pre>
read graph from input stream

print out each edge (twice)
```

Graph API: sample client

Graph input format.


```
% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4
...
12-11
12-9
```

```
In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);</pre>
read graph from input stream

print out each edge (twice)
```

Typical graph-processing code

```
public static int degree(Graph G, int v)
                           int degree = 0;
 compute the degree of v
                           for (int w : G.adj(v)) degree++;
                           return degree;
                        public static int maxDegree(Graph G)
                           int max = 0;
                           for (int v = 0; v < G.V(); v++)
compute maximum degree
                              if (degree(G, v) > max)
                                  max = degree(G, v);
                           return max;
                        public static double averageDegree(Graph G)
 compute average degree
                        { return 2.0 * G.E() / G.V(); }
                        public static int numberOfSelfLoops(Graph G)
                           int count = 0:
                           for (int v = 0; v < G.V(); v++)
    count self-loops
                              for (int w : G.adj(v))
                                  if (v == w) count++;
                           return count/2; // each edge counted twice
                        }
```

Possible Graph Representations:

- Set of edges
- Adjacency matrix
- Adjacency lists

On what basis to choose?

Let's look at some example to gain perspective.

Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

The Internet as mapped by the Opte Project

10 million Facebook friends

"Visualizing Friendships" by Paul Butler

The evolution of FCC lobbying coalitions

Graph applications

graph	vertex	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	street intersection, airport	highway, airway route
internet	class C network	connection
game	board position	legal move
social relationship	person, actor	friendship, movie cast
neural network	neuron	synapse
protein network	protein	protein-protein interaction
molecule	atom	bond

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

0	1	
0	2	
0	5	
0	6	
3	4	
3	5	
4	5	
4	6	_
7	8	
9	10	\neg
9	11	
9	12	
11	12	
_		_

Adjacency-matrix graph representation

Maintain a two-dimensional V-by-V boolean array; for each edge v-w in graph: adj[v][w] = adj[w][v] = true.

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.

representation	space	add edge	edge between v and w?	iterate over vertices adjacent to v?
list of edges	E	1	E	E
adjacency matrix	V	1 *	1	V
adjacency lists	E + V	1	degree(v)	degree(v)

^{*} disallows parallel edges

Adjacency-list graph representation: Java implementation

```
public class Graph
   private final int V;
                                                         adjacency lists
   private Bag<Integer>[] adj;
                                                         (using Bag data type)
   public Graph(int V)
       this.V = V;
                                                         create empty graph
       adj = (Bag<Integer>[]) new Bag[V];
                                                         with v vertices
       for (int v = 0; v < V; v++)
          adj[v] = new Bag<Integer>();
   public void addEdge(int v, int w)
                                                         add edge v-w
       adj[v].add(w);
                                                         (parallel edges allowed)
       adj[w].add(v);
   public Iterable<Integer> adj(int v)
                                                         iterator for vertices adjacent to v
      return adj[v]; }
```

Bag API (Chapter 1)

Main application. Adding items to a collection and iterating (when order doesn't matter).

public class	<pre>Bag<item> implements Iterable<item></item></item></pre>		
	Bag()	create an empty bag	
void	add(Item x)	insert a new item onto bag	
int	size()	number of items in bag	
Iterable <item></item>	iterator()	iterator for all items in bag	

Implementation. Stack (without pop) or queue (without dequeue).

- 🕨 graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Maze exploration

Maze graphs.

- Vertex = intersection.
- Edge = passage.

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur; Ariadne instructed Theseus to use a ball of string to find his way back out.

Claude Shannon (with Theseus mouse)

Maze exploration

Maze exploration

Warning: Don't visit twice!

An' here I sit so patiently
Waiting to find out what price
You have to pay to get out of
Going through all these things twice.

Bob Dylan "Stuck Inside Of Mobile With The Memphis Blues Again"

Depth-first search

Goal. Systematically search through a graph.

Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked vertices w adjacent to v.

Typical applications.

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

Design challenge. How to implement?

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

- Create a Graph Object.
- Pass the Graph to a graph-processing routine, e.g., Paths.
- Query the graph-processing routine for information.

```
public class Paths

Paths(Graph G, int s) find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path
```

```
Paths paths = new Paths(G, s);
for (int v = 0; v < G.V(); v++)
   if (paths.hasPathTo(v))
       StdOut.println(v);</pre>
print all vertices
connected to s
```

Depth-first search demo

Depth-first search

Goal. Find all vertices connected to *s* (and a path). Idea. Mimic maze exploration.

Algorithm.

- Use recursion (ball of string).
- Mark each visited vertex (and keep track of edge taken to visit it).
- Return (retrace steps) when no unvisited options.

Data structures.

- boolean[] marked to mark visited vertices.
- int[] edgeTo to keep tree of paths.
 (edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search

```
public class DepthFirstPaths
                                                             marked[v] = true
   private boolean[] marked;
                                                             if v connected to s
   private int[] edgeTo;
                                                             edgeTo[v] = previous vertex
   private int s;
                                                             on path from s to v
   public DepthFirstSearch(Graph G, int s)
                                                             initialize data structures
       dfs(G, s);
                                                             find vertices connected to s
   private void dfs(Graph G, int v)
                                                             recursive DFS does the work
       marked[v] = true;
       for (int w : G.adj(v))
           if (!marked[w])
              dfs(G, w);
              edgeTo[w] = v;
```

Depth-first search properties

Proposition. DFS marks all vertices connected to *s* in time proportional to the sum of their degrees.

Pf.

- Correctness:
 - if w marked, then w connected to s (why?)
 - if w connected to s, then w marked
 (if w unmarked, then consider last edge
 on a path from s to w that goes from a
 marked vertex to an unmarked one)
- Running time: each vertex
 connected to s is visited once.

Depth-first search properties

Proposition. After DFS, can find vertices connected to *s* in constant time and can find a path to *s* (if one exists) in time proportional to its length.

Pf. edgeTo[] is a parent-link representation of a tree rooted at s.

```
public boolean hasPathTo(int v)
{    return marked[v]; }

public Iterable<Integer> pathTo(int v)
{
    if (!hasPathTo(v)) return null;
    Stack<Integer> path = new Stack<Integer>();
    for (int x = v; x != s; x = edgeTo[x])
        path.push(x);
    path.push(s);
    return path;
}
```


Depth-first search application: preparing for a date

- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Breadth-first search demo

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.

Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from *s* to *t* that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue, and mark them as visited.

Intuition. BFS examines vertices in increasing distance from s.

Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s in a connected graph in time proportional to E + V.

Pf.

- Correctness: queue always consists of zero or more vertices of distance k from s, followed by zero or more vertices of distance k+1.
- Running time: each vertex connected to *s* is visited once.

Breadth-first search

```
public class BreadthFirstPaths
   private boolean[] marked;
  private boolean[] edgeTo[];
  private final int s;
  private void bfs(Graph G, int s)
     Queue<Integer> q = new Queue<Integer>();
      q.enqueue(s);
      marked[s] = true;
      while (!q.isEmpty())
         int v = q.dequeue();
         for (int w : G.adj(v))
            if (!marked[w])
               q.enqueue(w);
               marked[w] = true;
               edgeTo[w] = v;
```

Breadth-first search application: routing

Fewest number of hops in a communication network.

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

http://oracleofbacon.org

Endless Games board game

SixDegrees iPhone App

Kevin Bacon graph

- Include a vertex for each performer and for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from *s* = Kevin Bacon.

Breadth-first search application: Erdös numbers

hand-drawing of part of the Erdös graph by Ron Graham

- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Connectivity queries

Def. Vertices *v* and *w* are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w? in constant time.

public class CC			
	CC(Graph G)	find connected components in G	
boolean	<pre>connected(int v, int w)</pre>	are v and w connected?	
int	count()	number of connected components	
int	id(int v)	component identifier for v	

Union-Find? Not quite.

Depth-first search. Yes. [next few slides]

Connected components

The relation "is connected to" is an equivalence relation:

- Reflexive: v is connected to v.
- Symmetric: if *v* is connected to *w*, then *w* is connected to *v*.
- Transitive: if *v* connected to *w* and *w* connected to *x*, then *v* connected to *x*.

Def. A connected component is a maximal set of connected vertices.

3 connected components

2	0
3	0
4	0
5	0
6	0
7	1
8	1
9	2
10	2
11	2

12

id[v]

Remark. Given connected components, can answer queries in constant time.

Connected components

Def. A connected component is a maximal set of connected vertices.

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.

Connected components demo

Finding connected components with DFS

```
public class CC
   private boolean marked[];
                                                        id[v] = id of component containing v
   private int[] id;
   private int count;
                                                        number of components
   public CC(Graph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
          if (!marked[v])
                                                        run DFS from one vertex in
             dfs(G, v);
                                                        each component
             count++;
   public int count()
                                                        see next slide
   public int id(int v)
   private void dfs(Graph G, int v)
```

Finding connected components with DFS (continued)

Connected components application: study spread of STDs

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Problem. Is a graph bipartite?

- Any Villanova CS student could do it.
- Need to be a typical diligent CSC 2053 student.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

Problem. Find a cycle.

- Any Villanova CS student could do it.
- Need to be a typical diligent CSC 2053 student.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

Problem. Find a cycle that uses every edge.

Assumption. Need to use each edge exactly once.

- Any Villanova CS student could do it.
- Need to be a typical diligent CSC 2053 student.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

Bridges of Königsberg

The Seven Bridges of Königsberg. [Leonhard Euler 1736]

"...in Königsberg in Prussia, there is an island A, called the Kneiphof; the river which surrounds it is divided into two branches ... and these branches are crossed by seven bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once."

Euler tour. Is there a (general) cycle that uses each edge exactly once? Answer. Yes iff connected and all vertices have even degree.

To find path. DFS-based algorithm (see textbook).

Problem. Find a cycle that visits every vertex.

Assumption. Need to visit each vertex exactly once.

- Any Villanova CS student could do it.
- Need to be a typical diligent CSC 2053 student.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

Problem. Are two graphs identical except for vertex names?

How difficult?

- Any Villanova CS student could do it.
- Need to be a typical diligent CSC 2053 student.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

 $0 \Leftrightarrow 4$, $1 \Leftrightarrow 3$, $2 \Leftrightarrow 2$, $3 \Leftrightarrow 6$, $4 \Leftrightarrow 5$, $5 \Leftrightarrow 0$, $6 \Leftrightarrow 1$

Problem. Lay out a graph in the plane without crossing edges?

- Any Villanova CS student could do it.
- Need to be a typical diligent CSC 2053 student.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

