
Algorithms, 4 · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2012 · March 27, 2014 5:11:51 PM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

4.1 UNDIRECTED GRAPHS

‣ graph API
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Graph. Set of vertices connected pairwise by edges.!
!

Why study graph algorithms?!
• Thousands of practical applications. !
• Hundreds of graph algorithms known.!
• Interesting and broadly useful abstraction.!
• Challenging branch of computer science and discrete math.

!2

Undirected graphs

!3

Graph terminology

Path. Sequence of vertices connected by edges.!
Cycle. Path whose first and last vertices are the same.!
!
Two vertices are connected if there is a path between them.

Anatomy of a graph

cycle of
length 5

vertex

vertex of
degree 3

edge

path of
length 4

connected
components

!4

Some graph-processing problems

Path. Is there a path between s and t ?!
Shortest path. What is the shortest path between s and t ?!
!
Cycle. Is there a cycle in the graph?!
Euler tour. Is there a cycle that uses each edge exactly once?!
Hamilton tour. Is there a cycle that uses each vertex exactly once? !
!

Connectivity. Is there a way to connect all of the vertices?!
MST. What is the best way to connect all of the vertices?!
Biconnectivity. Is there a vertex whose removal disconnects the graph?!
!
Planarity. Can you draw the graph in the plane with no crossing edges?!
Graph isomorphism. Do two adjacency lists represent the same graph?!
!
Challenge. Which of these problems are easy? difficult? intractable?

!5

‣ graph API
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Graph drawing. Provides intuition about the structure of the graph.!
Caveat. Intuition can be misleading.

!6

Graph representation

Two drawings of the same graph

Two drawings of the same graphtwo drawings of the same graph

Vertex representation.!
• This lecture: use integers between 0 and V – 1.!
• Applications: convert between names and integers with symbol table.!
!
!
!
!
!
!
!
!
!
!
!
Anomalies.

A

G

E

CB

F

D

!7

Graph representation

symbol table

0

6

4

21

5

3

Anomalies

parallel
edges

self-loop

!8

Graph API

 public class Graph

Graph(int V) create an empty graph with V vertices

Graph(In in) create a graph from input stream

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

int V() number of vertices

int E() number of edges

String toString() string representation

In in = new In(args[0]);
Graph G = new Graph(in);
!
for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 StdOut.println(v + "-" + w);

read graph from

input stream

print out each

edge (twice)

!9

Graph input format.

Graph API: sample client

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E
% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4
…
12-11
12-9

In in = new In(args[0]);
Graph G = new Graph(in);
!
for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 StdOut.println(v + "-" + w);

read graph from

input stream

print out each

edge (twice)

!10

Typical graph-processing code
task implementation

compute the degree of v

public static int degree(Graph G, int v)
{
 int degree = 0;
 for (int w : G.adj(v)) degree++;
 return degree;
}

compute maximum degree

public static int maxDegree(Graph G)
{
 int max = 0;
 for (int v = 0; v < G.V(); v++)
 if (degree(G, v) > max)
 max = degree(G, v);
 return max;
}

compute average degree
public static double averageDegree(Graph G)
{ return 2.0 * G.E() / G.V(); }

count self-loops

public static int numberOfSelfLoops(Graph G)
{
 int count = 0;
 for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 if (v == w) count++;
 return count/2; // each edge counted twice
}

string representation of the
graph’s adjacency lists

(instance method in Graph)

public String toString()
{
 String s = V + " vertices, " + E + " edges\n";
 for (int v = 0; v < V; v++)
 {
 s += v + ": ";
 for (int w : this.adj(v))
 s += w + " ";
 s += "\n";
 }
 return s;
}

Typical graph-processing code

5234.1 Q Undirected Graphs

Possible Graph Representations:

!
!

‣ Set of edges!
!

‣ Adjacency matrix!
!

‣ Adjacency lists!
!
!
!

On what basis to choose?!
!
Let’s look at some example to gain perspective.

!11

!12

Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

!13

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

!14

10 million Facebook friends

"Visualizing Friendships" by Paul Butler

!15

The evolution of FCC lobbying coalitions

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm

!16

Graph applications

graph vertex edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation street intersection, airport highway, airway route

internet class C network connection

game board position legal move

social relationship person, actor friendship, movie cast

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond

Maintain a list of the edges (linked list or array).

!17

Set-of-edges graph representation

 0 1
 0 2
 0 5
 0 6
 3 4
 3 5
 4 5
 4 6
 7 8
 9 10
 9 11
 9 12
11 12

87

109

1211

0

6

4

21

5

3

Maintain a two-dimensional V-by-V boolean array; 
for each edge v–w in graph: adj[v][w] = adj[w][v] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 1 0 0 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0 0 0 0 0 0

4 0 0 0 1 0 1 1 0 0 0 0 0 0

5 1 0 0 1 1 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 1 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1

10 0 0 0 0 0 0 0 0 0 1 0 0 0

11 0 0 0 0 0 0 0 0 0 1 0 0 1

12 0 0 0 0 0 0 0 0 0 1 0 1 0

!18

Adjacency-matrix graph representation

two entries

for each edge

109

1211

0

6

4

21

5

3

87

Maintain vertex-indexed array of lists.

!19

Adjacency-list graph representation

109

1211

0

6

4

21

5

3

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 4

0 4

9 12

11 9

0

0

8

7

9

5 6 3

3 4 0

11 10 12

6 2 1 5

Adjacency-lists representation (undirected graph)

Bag objects

representations
of the same edge

87

In practice. Use adjacency-lists representation.!
• Algorithms based on iterating over vertices adjacent to v.!
• Real-world graphs tend to be sparse.

!20

Graph representations

huge number of vertices,  
small average vertex degree

sparse (E = 200) dense (E = 1000)

Two graphs (V = 50)

In practice. Use adjacency-lists representation.!
• Algorithms based on iterating over vertices adjacent to v.!
• Real-world graphs tend to be sparse.

!21

Graph representations

representation space add edge
edge between

v and w?

iterate over vertices

adjacent to v?

list of edges E 1 E E

adjacency matrix V 1 * 1 V

adjacency lists E + V 1 degree(v) degree(v)

huge number of vertices,  
small average vertex degree

* disallows parallel edges

!22

Adjacency-list graph representation: Java implementation

public class Graph
{
 private final int V;
 private Bag<Integer>[] adj;
!
 public Graph(int V)
 {
 this.V = V;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }
!
 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 adj[w].add(v);
 }
!
 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency lists

(using Bag data type)

create empty graph 
with V vertices

add edge v-w  
(parallel edges allowed)

iterator for vertices adjacent to v

Main application. Adding items to a collection and iterating  
(when order doesn't matter).
!
!
!
!
!
!
!
!
!
!
!
!
!
Implementation. Stack (without pop) or queue (without dequeue).

!23

Bag API (Chapter 1)

 public class Bag<Item> implements Iterable<Item>

Bag() create an empty bag

void add(Item x) insert a new item onto bag

int size() number of items in bag

Iterable<Item> iterator() iterator for all items in bag

a bag of
marbles

process each marble m
(in any order)

add()

for (Marble m : bag)

add()

!24

‣ graph API
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

!25

Maze exploration

Maze graphs.!
• Vertex = intersection.!
• Edge = passage.!
!
!
!
!
!
!
!
!
!
!
!
!
Goal. Explore every intersection in the maze.

intersection passage

Algorithm.!
• Unroll a ball of string behind you.!
• Mark each visited intersection and each visited passage.!
• Retrace steps when no unvisited options.

!26

Trémaux maze exploration

Tremaux exploration

!27

Trémaux maze exploration

Algorithm.!
• Unroll a ball of string behind you.!
• Mark each visited intersection and each visited passage.!
• Retrace steps when no unvisited options.!
!
First use? Theseus entered Labyrinth to kill the monstrous Minotaur; 
Ariadne instructed Theseus to use a ball of string to find his way back out.

Claude Shannon (with Theseus mouse)

!28

Maze exploration

!29

Maze exploration

Warning: Don’t visit twice!

!30

An' here I sit so patiently
Waiting to find out what price
You have to pay to get out of
Going through all these things twice.
!
Bob Dylan
“Stuck Inside Of Mobile With The Memphis Blues Again”

Goal. Systematically search through a graph.!
Idea. Mimic maze exploration.!
!
!
!
!
!
!
!
!

Typical applications.!
• Find all vertices connected to a given source vertex.!
• Find a path between two vertices.!
!

!
Design challenge. How to implement?

Depth-first search

Mark v as visited.
Recursively visit all unmarked
 vertices w adjacent to v.

DFS (to visit a vertex v)

!32

Design pattern. Decouple graph data type from graph processing. !
• Create a Graph object.!
• Pass the Graph to a graph-processing routine, e.g., Paths.!
• Query the graph-processing routine for information.

Design pattern for graph processing

 Paths paths = new Paths(G, s);
 for (int v = 0; v < G.V(); v++)
 if (paths.hasPathTo(v))
 StdOut.println(v);

print all vertices 
connected to s

 public class Paths

Paths(Graph G, int s) find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Depth-first search demo

!33

Goal. Find all vertices connected to s (and a path).!
Idea. Mimic maze exploration.!
!
Algorithm.!
• Use recursion (ball of string).!
• Mark each visited vertex (and keep track of edge taken to visit it).!
• Return (retrace steps) when no unvisited options.!
!

Data structures.!
• boolean[] marked to mark visited vertices. !
• int[] edgeTo to keep tree of paths. 

(edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search

!35

Depth-first search

public class DepthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private int s;
!
 public DepthFirstSearch(Graph G, int s)
 {
 ...
 dfs(G, s);
 }
!
 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 {
 dfs(G, w);
 edgeTo[w] = v;
 }
 }
}

marked[v] = true

if v connected to s

find vertices connected to s

recursive DFS does the work

edgeTo[v] = previous vertex

on path from s to v

initialize data structures

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to  
the sum of their degrees.!
!
Pf.!
• Correctness:!

- if w marked, then w connected to s (why?)!
- if w connected to s, then w marked  

(if w unmarked, then consider last edge  
on a path from s to w that goes from a  
marked vertex to an unmarked one)!

!
• Running time: each vertex 

connected to s is visited once.

!36

set of
unmarked

vertices

no such edge
can exist

source

v

s

set of marked
vertices

w

x

Proposition. After DFS, can find vertices connected to s in constant time and can
find a path to s (if one exists) in time proportional to its length.!
!
Pf. edgeTo[] is a parent-link representation of a tree rooted at s.

!37

Depth-first search properties

 public boolean hasPathTo(int v)
 { return marked[v]; }
!
 public Iterable<Integer> pathTo(int v)
 {
 if (!hasPathTo(v)) return null;
 Stack<Integer> path = new Stack<Integer>();
 for (int x = v; x != s; x = edgeTo[x])
 path.push(x);
 path.push(s);
 return path;
 }

Trace of pathTo() computation

edgeTo[]
 0
 1 2
 2 0
 3 2
 4 3
 5 3

5 5
3 3 5
2 2 3 5
0 0 2 3 5

x path

Depth-first search application: preparing for a date

!38

http://xkcd.com/761/

!39

‣ graph API
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

!40

Breadth-first search demo

Depth-first search. Put unvisited vertices on a stack.!
Breadth-first search. Put unvisited vertices on a queue.!
!

Shortest path. Find path from s to t that uses fewest number of edges.!
!
!
!
!
!
!
!
!
!
!
!

Intuition. BFS examines vertices in increasing distance from s.

!41

Breadth-first search

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
 - remove the least recently added vertex v
 - add each of v's unvisited neighbors to the queue,  
 and mark them as visited.

BFS (from source vertex s)

Breadth-first
maze exploration

Proposition. BFS computes shortest path (number of edges) from s  
in a connected graph in time proportional to E + V.!
!
Pf.!
• Correctness: queue always consists of zero or more vertices of distance k from

s, followed by zero or more vertices of distance k + 1.!
!

• Running time: each vertex connected to s is visited once.

Breadth-first search properties

!42

0

4

2

1

5
3

standard drawing

0

4

2

1

5

3

dist = 0 dist = 1 dist = 2

Breadth-first search

!43

public class BreadthFirstPaths
{
 private boolean[] marked;
 private boolean[] edgeTo[];
 private final int s;
 …
!
 private void bfs(Graph G, int s)
 {
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 marked[s] = true;
 while (!q.isEmpty())
 {
 int v = q.dequeue();
 for (int w : G.adj(v))
 {
 if (!marked[w])
 {
 q.enqueue(w);
 marked[w] = true;
 edgeTo[w] = v;
 }
 }
 }
 }
}

!44

Breadth-first search application: routing

Fewest number of hops in a communication network.

ARPANET, July 1977

!45

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

http://oracleofbacon.org SixDegrees iPhone App

Endless Games board game

!46

Kevin Bacon graph

• Include a vertex for each performer and for each movie.!
• Connect a movie to all performers that appear in that movie.!
• Compute shortest path from s = Kevin Bacon.

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielgud

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

performer
vertex

movie
vertex

Symbol graph example (adjacency lists)

...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/... /Geppi, Cindy/Hershey, Barbara...
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/.../Winslet, Kate/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/.../Bancroft, Anne/...
To Catch a Thief (1955)/París, Manuel/.../Grant, Cary/.../Kelly, Grace/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/.../ Tucci, Maria...
...

movies.txt

V and E
not explicitly

specified

"/"
delimiter

!47

Breadth-first search application: Erdös numbers

hand-drawing of part of the Erdös graph by Ron Graham

!48

‣ graph API
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Def. Vertices v and w are connected if there is a path between them.!
!
Goal. Preprocess graph to answer queries: is v connected to w ? !
in constant time.!
!
!
!
!
!
!
!
!
!
!
Union-Find? Not quite.!
Depth-first search. Yes. [next few slides]

!49

Connectivity queries

 public class CC

CC(Graph G) find connected components in G

boolean connected(int v, int w) are v and w connected?

int count() number of connected components

int id(int v) component identifier for v  

The relation "is connected to" is an equivalence relation:!
• Reflexive: v is connected to v.!
• Symmetric: if v is connected to w, then w is connected to v.!
• Transitive: if v connected to w and w connected to x, then v connected to x.!
!

Def. A connected component is a maximal set of connected vertices.!
!
!
!
!
!
!
!
!
!
!
!
Remark. Given connected components, can answer queries in constant time.

!50

Connected components

 v id[v]
 0 0 
 1 0
 2 0 
 3 0
 4 0 
 5 0
 6 0 
 7 1
 8 1
 9 2
 10 2
 11 2
 12 2

87

109

1211

0

6

4

21

5

3

3 connected components

Def. A connected component is a maximal set of connected vertices.!

!51

Connected components

63 connected components

Goal. Partition vertices into connected components.

!52

Connected components

Initialize all vertices v as unmarked.
!
For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

Connected components

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

Connected components demo

!53

!54

Finding connected components with DFS

public class CC
{
 private boolean marked[];
 private int[] id;
 private int count;
!
 public CC(Graph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }
!
 public int count()
 public int id(int v)
 private void dfs(Graph G, int v)
!
}

run DFS from one vertex in

each component

id[v] = id of component containing v

number of components

see next slide

!55

Finding connected components with DFS (continued)

 public int count()
 { return count; }
!
 public int id(int v)
 { return id[v]; }
!
 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

all vertices discovered in

same call of dfs have same id

number of components

id of component containing v

!56

Connected components application: study spread of STDs

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of
adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44–99, 2004.

!57

‣ graph API
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Graph-processing challenge 1

Problem. Is a graph bipartite?!
!
!
!
!
How difficult?!
• Any Villanova CS student could do it.!
• Need to be a typical diligent CSC 2053 student.!
• Hire an expert.!
• Intractable.!
• No one knows.!
• Impossible.

!58

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

Graph-processing challenge 2

Problem. Find a cycle.!
!
!
!
!
How difficult?!
• Any Villanova CS student could do it.!
• Need to be a typical diligent CSC 2053 student.!
• Hire an expert.!
• Intractable.!
• No one knows.!
• Impossible.

!59

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

0

6

4

21

5

3

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.!
Assumption. Need to use each edge exactly once.!
!
!
!
How difficult?!
• Any Villanova CS student could do it.!
• Need to be a typical diligent CSC 2053 student.!
• Hire an expert.!
• Intractable.!
• No one knows.!
• Impossible.

!60

0-1
0-2
0-5
0-6
1-2
2-3
2-4
3-4
4-5
4-6

0

6

4

21

5

3

0-1-2-3-4-2-0-6-4-5-0

The Seven Bridges of Königsberg. [Leonhard Euler 1736]!
!
!
!
!
!
!
!
!
!
!
!
!

Euler tour. Is there a (general) cycle that uses each edge exactly once?!
Answer. Yes iff connected and all vertices have even degree.!
To find path. DFS-based algorithm (see textbook).

!61

Bridges of Königsberg

“ … in Königsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a
way that he could cross each bridge once and only once. ”

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.!
Assumption. Need to visit each vertex exactly once.!
!
!
!
How difficult?!
• Any Villanova CS student could do it.!
• Need to be a typical diligent CSC 2053 student.!
• Hire an expert.!
• Intractable.!
• No one knows.!
• Impossible.

!62

0-1
0-2
0-5
0-6
1-2
2-6
3-4
3-5
4-5
4-60-5-3-4-6-2-1-0

0

6

4

21

5

3

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?!
!
!
!
!
How difficult?!
• Any Villanova CS student could do it.!
• Need to be a typical diligent CSC 2053 student.!
• Hire an expert.!
• Intractable.!
• No one knows.!
• Impossible.

!63

0-1
0-2
0-5
0-6
3-4
3-5
4-5
4-6

0

6

4

21

5

3

3

1

5

2

4

0

6

0↔4, 1↔3, 2↔2, 3↔6, 4↔5, 5↔0, 6↔1

0-4
0-5
0-6
1-4
1-5
2-4
3-4
5-6

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?!
!
!
!
!
How difficult?!
• Any Villanova CS student could do it.!
• Need to be a typical diligent CSC 2053 student.!
• Hire an expert.!
• Intractable.!
• No one knows.!
• Impossible.

!64

1

6

4

2

0

5

3

0-1
0-2
0-5
0-6
3-4
3-5
4-5
4-6

0

6

4

21

5

3

