CSC2053 Graph Traversals

1. Trace DFS on this graph:

Trace the algorithm by hand, paying attention to visit the vertices according to the
order in which they are appear in the adjacency lists.

v_adjacency lists v marked[v] edgeTo]|v]

521
03
40
415
325
043

A
U WM RO

Draw a picture of the tree produced by depth-first search:

Villanova University =~ CSC 2053 www.csc.villanova.edu/~map/1051 Dr. Papalaskari

2. Trace BFS on this graph:

Trace the algorithm by hand, paying attention to visit the vertices according to the
order in which they are appear in the adjacency lists.

v_adjacency lists v marked|v] edgeTo[v]

521
03
40
415
325
043

A S T
U W N RO

Draw a picture of the tree produced by breadth-first search:

Villanova University =~ CSC 2053 www.csc.villanova.edu/~map/1051 Dr. Papalaskari

3. Try the depth-first and breadth-first implementations that we studied on the
above graph.

We need to be careful how to input the graph, so that the adjacency lists come out the
same. Use the following input file:
6

8

35

45

13

01

02

24

05

34

First, run it through Graph. java to verify that you got the adjacency lists as above. Then

run it through DepthFirstPaths and BreadthFirstPaths to verify that you traced the
algorithm correctly.

Repeat with some other vertices as sources and draw the resulting graphs here (do a
quick hand-trace to verify that the answers make sense!)

4. Can you modify BreadthFirstSearch to use a Stack instead of a Queue to obtain
DepthFirstSearch?

Villanova University =~ CSC 2053 www.csc.villanova.edu/~map/1051 Dr. Papalaskari

