HASH TABLES

» hash functions
» separate chaining
» linear probing

Algorithms, 4 . Robert Sedgewick and Kevin Wayne . Copyright © 2002-2012 . March 20, 2014 9:37:07 AM




ST implementations: summary

worst-case cost average-case cost
(after N inserts) (after N random inserts) ordered

implementation : :
iteration?
search insert delete search hit insert delete

sequential search

N N N/2 N N/2
(unordered list) / / no
binary search s N N e N/2 N/2
es
(ordered array) : : v
BST N N N 1.38IgN  1.38IgN ? yes
red-black BST 2 1g N 2 1g N 2 1g N 1.00Ig N 1.00Ig N 1.001g N yes

Q. Can we do better?
A. Yes, but with different access to the data.

key
interface

equals ()

compareTo ()

compareTo ()

compareTo ()



Hashing: basic plan
Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

hash("it") = 3
\ 3 nygw

4

Issues.
e Computing the hash function.
e Equality test: Method for checking whether two keys are equal.

5



Hashing: basic plan
Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

hash("it") = 3 >
\ 3 netro
Issues. 27,
e Computing the hash function. hash ("times") = 3 /

5
e Equality test: Method for checking whether two keys are equal.

e Collision resolution: Algorithm and data structure
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

* No space limitation: trivial hash function with key as index.

e No time limitation: trivial collision resolution with sequential search.
e Space and time limitations: hashing (the real world).



» hash functions




Computing the hash function

|dealistic goal. Scramble the keys uniformly to produce a table index.
o Efficiently computable.
e Each table index equally likely for each key.

\ thoroughly researched problem,
still problematic in practical applications

Ex 1. Phone numbers.
e Bad: first three digits.

e Better: last three digits. taloile
index

Ex 2. Social Security numbers.

* Bad: first three digits. «—— 573 = California, 574 = Alaska

e Better: last three digits_ (assigned in chronological order within geographic region)

Practical challenge. Need different approach for each key type.



Java’s hash code conventions

All Java classes inherit a method hashcode (), Which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If 'x.equals(y), then (x.hashCode() '= y.hashCode()).

H =
v v

x.hashCode () v.hashCode ()
Default implementation. Memory address of x.

Legal (but poor) implementation. Always return 17.
Customized implementations. iInteger, Double, String, File, URL, Date, ...
User-defined types. Users are on their own.



Implementing hash code: integers, booleans, and doubles

Java library implementations

public final class Integer public final class Double

{ {
private final int wvalue; private final double value;
public int hashCode () public int hashCode ()
{ return wvalue; } {

long bits = doubleToLongBits (value) ;

return (int) (bits * (bits >>> 32));
} A

public final class Boolean

{

private final boolean value; convert to IEEE 64-bit representation;

xor most significant 32-bits

with least significant 32-bits
public int hashCode ()

{

if (value) return 1231;

else return 1237;




Implementing hash code: strings

Java library implementation

public final class String

{

private final char][] s;
‘a’ 97

b 98
public int hashCode ()
{ 'c' 99
int hash = 0;

for (int i = 0; 1 < length();, i++)
hash = s[i] + (31 * hash);

return hash;
}

* Horner's method to hash string of length L: L multiplies/adds.
e Equivalentto A=s[0] - 3141 + ...+ s[L-3] - 31%> + s[L-2] 31! + s[L—1]-31".

ith character of s

EX.

String s = "call";
int code = s.hashCode(); <«—— 3045982 =99-313+97-312+ 10831 + 108:31°

=108 +31-(108 +31-(97 + 31 -(99)))
(Horner's method)



Implementing hash code: strings

Performance optimization.

e Cache the hash value in an instance variable.

e Return cached value.

public final class String
{

private int hash = 0;
private final char|[] s;

public int hashCode ()

{
int h = hash;

if (h '= 0) return h;
for (int i = 0; i < length(); i++)
h = s[i] + (31 * hash);

hash = h;
return h;

cache of hash code

return cached value

store cache of hash code

10



Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>

{

private final String who;
private final Date when;
private final double amount;

public Transaction (String who, Date when, double amount)
{ /* as before */ }

public boolean equals (Object y)
{ /* as before */ }

public int hashCode ()
{ nonzero constant

int hash = 17; *”””,,’

hash = 31l*hash + who.hashCode() ;

for reference types,

< use hashCode ()
hash = 31*hash + when.hashCode() ;
hash = 31*hash + ((Double) amount) .hashCode () ; < for primitive types,
return hash; use hashCode ()
} of wrapper type

} typically a small prime

11



Hash code design

"Standard" recipe for user-defined types.
e Combine each significant field using the 31x + y rule.

e |f field is a primitive type, use wrapper type hashCode ().
e [f field is null, return 0.

e |f field is a reference type, use hashCode ().
e |f field is an array, apply to each entry.

<«—— applies rule recursively

<€<——— Or use Arrays.deepHashCode ()

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Keys are bitstring; "universal" hash functions exist.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

12



Modular hashing

Hash code. An int between -231 and 231-1.
Hash function. An int between o0 and M-1 (for use as array index).

typically a prime or power of 2

private int hash (Key key)
{ return key.hashCode() % M; }

private int hash (Key key)
{ return Math.abs (key.hashCode()) % M; }

1-in-a-billion bug

\ hashCode() of "polygenelubricants" is —23!

private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) $ M; }

correct

13



Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer
between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Birthday problem. Expect two balls in the same bin after ~'\/:rc M/ 2 tosses.

Coupon collector. Expect every bin has = 1 ball after ~ M In M tosses.

Load balancing. After M tosses, expect most loaded bin has
O (log M /log log M) balls.

14



Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer
between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's string data uniformly distribute the keys of Tale of Two Cities

15



» separate chaining

16




Collisions

Collision. Two distinct keys hashing to same index.
e Birthday problem = can't avoid collisions unless you have

a ridiculous (quadratic) amount of memory.
e Coupon collector + load balancing = collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

hash("it") = 3

. 4
hash("times") = 3‘/////W

17



Separate chaining symbol table

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]
e Hash: map key to integer i between 0 and M - 1.

e |nsert: put at front of /™ chain (if not already there).
e Search: need to search only /™ chain.

key hash
S 2
E 0 A E
A 0
R4 st[] null
C 4 0 /
H 4 1
0 2 > X S
E 3
X 2 4 \
A 0 L > P
M 4
P 3 M > H > C R
L 3
E 0




Separate chaining ST: Java implementation

public class SeparateChainingHashST<Key, Value>
{

array doubling
and halving
code omitted

private int M = 97; // number of chains

private Node[] st = new Node[M]; // array of chains

private static class Node

{

private Object key; <«—— no generic array creation

private Object val; <—— (declare key and value of type Object)
private Node next;

private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) $ M; }

public Value get (Key key) {
int i = hash (key)
for (Node x = st[i]; x != null; x = x.next)
if (key.equals(x.key)) return (Value) x.val;

return null;




Separate chaining ST: Java implementation

public class SeparateChainingHashST<Key, Value>

{
private int M = 97; // number of chains
private Node[] st = new Node[M]; // array of chains

private static class Node
{
private Object key;
private Object val;
private Node next;

private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) $ M; }

public void put (Key key, Value val) {
int i = hash (key)
for (Node x = st[i]; x != null; x = x.next)
if (key.equals(x.key)) { x.val = val; return; }

st[i] = new Node (key, val, st[i])

20



Analysis of separate chaining

Proposition. Under uniform hashing assumption, probability that the number of
keys in a list is within a constant factor of N/ M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

__(10,.12511...)

A —.125

| | | | -0
0 10 20 30

Binomial distribution (N =104, M =103, & = 10)

equals () and hashCode ()

hd

Consequence. Number of probes for search/insert is proportional to N/ M.
e Mtoo large = too many empty chains.

: M times faster than
e M too small = chains too long. e CeETe
* Typical choice: M~ N/5 = constant-time ops.

21



ST implementations: summary

worst-case cost

(after N inserts)

sequential search

N
(unordered list)
binary search
Ig N N
(ordered array)
BST N N

red-black tree 21gN 2 1gN

separate chaining IgN* Ig N *

* under uniform hashing assumption

N

2 1g N

Ig N *

average case

(after N random inserts)

N/2

1.38Ig N

1.00 Ilg N

3-5

N

N/?2

1.38Ig N

1.00 Ig N

3-5 *

N/2

N/2

1.00Ig N

3-5 *

ordered
iteration?

no

yes

yes

yes

no

key
interface

equals ()

compareTo ()

compareTo ()

compareTo ()

equals ()

22



» linear probing

23




Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

st[0] jocularly
st[1] null
st[2] listen
st[3] suburban
null
st[30000] browsing

linear probing (M = 30001, N =15000)



Linear probing demo
Hash. Map key to integer i between 0 and M - 1.

Insert. Put at table index i if free; if nottry i+ 1,i+ 2, etc.
Search. Search table index i; if occupied but no match, try i + 1, i + 2, etc.

Note. Array size M must be greater than M.

st[] P M A C S H L E

14

15

25



Linear probing ST implementation

public class LinearProbingHashST<Key, Value>

{
private int M = 30001;

private Value[] wvals = (Value[]) new Object[M];
private Key[] keys = (Key[]) new Object[M];

array doubling
< and halving
code omitted

private int hash(Key key) { /* as before */ }

public void put (Key key, Value val)
{

int 1i;
for (i = hash(key); keys[i] '= null; i = (i+l) % M)
if (keys[i] .equals (key))
break;
keys[i] = key;
vals[i] = wval;

public Value get (Key key)
{
for (int i = hash(key); keys[i] != null; i = (i+l) % M)
if (key.equals (keys[i]))
return vals[i];
return null;




Clustering

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

EIE EE EE

27



Knuth's parking problem

Model. Cars arrive at one-way street with M parking spaces.
Each desires a random space i : if space i is taken, try i+ 1,7+ 2, etc.

Q. What is mean displacement of a car?

J displacement = 51
tmtd  med e )

-5 W3

Half-full. With A /2 cars, mean displacement is ~ 3/ 2.
Full. With M cars, mean displacement is ~ \/n M/ 8

28



Analysis of linear probing

Proposition. Under uniform hashing assumption, the average number of probes in
a linear probing hash table of size M that contains N = a M keys is:

Yo\ i o\ azay
O R =)

search hit search miss / insert
My B anlyiis oF i algpitio. "*@"""7
EYA" #‘;“%"? W&"’w “‘L ”‘ c”w“» .3 a 3 5 4
chras o ToPmw" spoRESsING. | o EK By Knuth 7/22/63

o 1 Iqtroduction and’ Definition. Uyeﬂ aéd*czsing is a v1dcly-uscd technique
for keeping "symbol twoies," The pethod was first used in 1955 by Samuel, Aodahl, |
and Bochze in an assenbly program [or the IEM T0l, An extensive discussion of
the method was given by Peterson in 1957 {1], and frequent references have been
made to it ever since {e.g. Schay and Spruth (2], Iversen [3]). However, the
tloing characteristics have apparently never bean exactly estahlxshed and indeed
the author has heard reports of severel reputable mathematicians who failed 0
find the solution after some trial. Therefore it is the purpose of this note to
indlc;te one Way by whica the solu.ion can be obtained.

Parameters.
e Mtoo large = too many empty array entries.

e Mtoo small = search time blows up.

. Typical choice: o = N/ M ~ %, # probes for search hit is about 3/2

# probes for search miss is about 5/2

29



ST implementations: summary

sequential search

(unordered list)

binary search

Ilg N
(ordered array) g
BST N
red-black tree 21gN

separate chaining Ig N *

linear probing Ig N *

worst-case cost

N

Ig N *

* under uniform hashing assumption

(after N inserts)

N

2 1gN

Ig N *

Ig N *

average case

(after N random inserts)

N/2

1.381g N

1.00Ig N

3-5 *

3-5 *

N

N/2

1.381g N

1.00Ig N

3-5 *

3-5 *

N/2

N/2

1.00 Ig N

3-5 *

3-5 *

ordered
iteration?

no

yes

yes

yes

no

no

key
interface

equals ()

compareTo ()

compareTo ()

compareTo ()

equals ()

equals ()

30



War story: String hashing in Java

String hashCode () in Java 1.1.

e For long strings: only examine 8-9 evenly spaced characters.
e Benefit: saves time in performing arithmetic.

public int hashCode ()

{
int hash = 0;

int skip = Math.max (1, length() / 8);
for (int i = 0; 1 < length(); i += skip)

hash = s[i] + (37 * hash);
return hash;

 Downside: great potential for bad collision patterns.

http://www.cs.princeton.edu/introcs/13loop/Hello
http://www.cs.princeton.edu/introcs/13loop/Hello
http://www.cs.princeton.edu/introcs/13loop/Hello.
http://www.cs.princeton.edu/introcs/12type/index.

t t t t t

t

t

t

. java
.class
html
html

31



War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

malicious adversary learns your hash function

(e.g., by reading Java APIl) and causes a big pile-up

in single slot that grinds performance to a halt

Real-world exploits. [Crosby-Wallach 2003]

e Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

* Perl 5.8.0: insert carefully chosen strings into associative array.

e Linux 2.4.20 kernel: save files with carefully chosen names.

32



Separate chaining vs. linear probing

Separate chaining.

e Easier to implement delete.

* Performance degrades gracefully.

e Clustering less sensitive to poorly-designed hash function.

Linear probing.
* | ess wasted space.
e Better cache performance.

Q. How to delete?
Q. How to resize?

33



Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate-chaining variant)
e Hash to two positions, insert key in shorter of the two chains.
* Reduces expected length of the longest chain to log log V.

Double hashing. (linear-probing variant)

e Use linear probing, but skip a variable amount, not just 1 each time.
o Effectively eliminates clustering.

e Can allow table to become nearly full.

e More difficult to implement delete.

Cuckoo hashing. (linear-probing variant)

e Hash key to two positions; insert key into either position; if occupied, reinsert
displaced key into its alternative position (and recur).

e Constant worst case time for search.

5]

R
o
“4

34



Hash tables vs. balanced search trees

Hash tables.

e Simpler to code.

* No effective alternative for unordered keys.

e Faster for simple keys (a few arithmetic ops versus log N compares).
e Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.
e Stronger performance guarantee.
e Support for ordered ST operations.

o Easier to implement compareTo () correctly than equals () and hashcode ().

Java system includes both.
e Red-black BSTs: java.util.TreeMap, java.util.TreeSet.
e Hash tables: java.util.HashMap, java.util.IdentityHashMap.

35



