1.5 Union Find

- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Subtext of today’s lecture (and this course)

• Steps to developing a usable algorithm.
 • Model the problem.
 • Find an algorithm to solve it.
 • Fast enough? Fits in memory?
 • If not, figure out why.
 • Find a way to address the problem.
 • Iterate until satisfied.

• The scientific method.

• Mathematical analysis.
dynamic connectivity
quick find
quick union
improvements
applications
• Given a set of N objects.
 • **Union command:** connect two objects.
 • **Find/connected query:** is there a path connecting the two objects?

union(4, 3)
union(3, 8)
union(6, 5)
union(9, 4)
union(2, 1)

connected(0, 7) ×
connected(8, 9) ✓
union(5, 0)
union(7, 2)
union(6, 1)
connected(0, 7) ✓
union(1, 0)
Connectivity example

Q. Is there a path connecting p and q?

A. Yes.

more difficult problem: find the path
Modeling the objects

• Dynamic connectivity applications involve manipulating objects of all types.
 • Pixels in a digital photo.
 • Computers in a network.
 • Friends in a social network.
 • Transistors in a computer chip.
 • Elements in a mathematical set.
 • Variable names in Fortran program.
 • Metallic sites in a composite system.

• When programming, convenient to name sites 0 to N-1.
 • Use integers as array index.
 • Suppress details not relevant to union-find.

 can use symbol table to translate from site names to integers: stay tuned (Chapter 3)
We assume "is connected to" is an equivalence relation:

- Reflexive: p is connected to p.
- Symmetric: if p is connected to q, then q is connected to p.
- Transitive: if p is connected to q and q is connected to r, then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.
Implementing the operations

• Find query. Check if two objects are in the same component.

• Union command. Replace components containing two objects with their union.

Implementing the operations

union(2, 5)

3 connected components

2 connected components
Goal. Design efficient data structure for union-find.

- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.

Union-find data type (API)

public class `UF`

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF(int N)</td>
<td>initialize union-find data structure with N objects (0 to $N - 1$)</td>
</tr>
<tr>
<td>void union(int p, int q)</td>
<td>add connection between p and q</td>
</tr>
<tr>
<td>boolean connected(int p, int q)</td>
<td>are p and q in the same component?</td>
</tr>
<tr>
<td>int find(int p)</td>
<td>component identifier for p (0 to $N - 1$)</td>
</tr>
<tr>
<td>int count()</td>
<td>number of components</td>
</tr>
</tbody>
</table>
Dynamic-connectivity client

- Read in number of objects \(N \) from standard input.
- Repeat:
 - read in pair of integers from standard input
 - if they are not yet connected, connect them and print out pair

```java
public static void main(String[] args) {
    int N = StdIn.readInt();
    UF uf = new UF(N);
    while (!StdIn.isEmpty())
    {
        int p = StdIn.readInt();
        int q = StdIn.readInt();
        if (!uf.connected(p, q))
        {
            uf.union(p, q);
            StdOut.println(p + " " + q);
        }
    }
}
```

% more tinyUF.txt
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7
› dynamic connectivity
› quick find
› quick union
› improvements
› applications
Quick-find [eager approach]

- Data structure.
 - Integer array $id[]$ of size n.
 - Interpretation: p and q are connected if and only if they have the same id.

<table>
<thead>
<tr>
<th>id[]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

0, 5 and 6 are connected
1, 2, and 7 are connected
3, 4, 8, and 9 are connected
Quick-find [eager approach]

• Data structure.
 • Integer array \(id[] \) of size \(N \).
 • Interpretation: \(p \) and \(q \) are connected if and only if they have the same id.

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text{id[]} & 0 & 1 & 1 & 8 & 8 & 0 & 0 & 1 & 8 & 8
\end{array}
\]

• Find. Check if \(p \) and \(q \) have the same id.

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text{id[]} & 1 & 1 & 1 & 8 & 8 & 1 & 1 & 1 & 8 & 8
\end{array}
\]

• Union. To merge components containing \(p \) and \(q \), change all entries whose id equals \(id[p] \) to \(id[q] \).

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text{id[]} & 1 & 1 & 1 & 8 & 8 & 1 & 1 & 1 & 8 & 8
\end{array}
\]

After union of 6 and 1

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text{id[]} & 1 & 1 & 1 & 8 & 8 & 1 & 1 & 1 & 8 & 8
\end{array}
\]

Problem: many values can change
public class QuickFindUF {
 private int[] id;

 public QuickFindUF(int N) {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean connected(int p, int q) {
 return id[p] == id[q];
 }

 public void union(int p, int q) {
 int pid = id[p];
 int qid = id[q];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = qid;
 }
}
Quick-find is too slow

• **Cost model.** Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
</tr>
</tbody>
</table>

order of growth of number of array accesses

• **Quick-find defect.** Union too expensive.

• **Ex.** Takes N^2 array accesses to process sequence of N union commands on N objects.
Quadratic algorithms do not scale

• Rough standard (for now).
 • 10^9 operations per second.
 • 10^9 words of main memory.
 • Touch all words in approximately 1 second.

• Ex. Huge problem for quick-find.
 • 10^9 union commands on 10^9 objects.
 • Quick-find takes more than 10^{18} operations.
 • 30+ years of computer time!

• Quadratic algorithms don’t scale with technology.
 • New computer may be 10x as fast.
 • But, has 10x as much memory \Rightarrow want to solve a problem that is 10x as big.
 • With quadratic algorithm, takes 10x as long!
› dynamic connectivity
› quick find
› quick union
› improvements
› applications
Quick-union [lazy approach]

• Data structure.
 • Integer array \(id[] \) of size \(N \).
 • Interpretation: \(id[i] \) is parent of \(i \).
 • Root of \(i \) is \(id[id[id[\ldots id[i]\ldots]]] \).

<table>
<thead>
<tr>
<th>id[]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

• Find. Check if \(p \) and \(q \) have the same root.

• Union. To merge components containing \(p \) and \(q \), set the id of \(p \)'s root to the id of \(q \)'s root.

- Only one value changes

keep going until it doesn’t change (algorithm ensures no cycles)

3's root is 9; 5's root is 6
3 and 5 are not connected
Quick-union demo
public class QuickUnionUF {
 private int[] id;

 public QuickUnionUF(int N) {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i) {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean connected(int p, int q) {
 return root(p) == root(q);
 }

 public void union(int p, int q) {
 int i = root(p);
 int j = root(q);
 id[i] = j;
 }
}
Quick-union is also too slow

• **Cost model.** Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>N</td>
<td>N†</td>
<td>N</td>
</tr>
</tbody>
</table>

† includes cost of finding roots

• **Quick-find defect.**
 • Union too expensive \((N)\) array accesses).
 • Trees are flat, but too expensive to keep them flat.

• **Quick-union defect.**
 • Trees can get tall.
 • Find too expensive (could be \(N\) array accesses).
› dynamic connectivity
› quick find
› quick union
› improvements
› applications
Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking root of smaller tree to root of larger tree.

Improvement 1: weighting

![Diagram showing quick-union and weighted quick-union trees with labels indicating size and structure changes.](image)

- Weighted quick-union always chooses the better alternative.
- Might put the larger tree lower.
Weighted quick-union demo
Quick-union and weighted quick-union example

Quick-union and weighted quick-union (100 sites, 88 union() operations)

average distance to root: 1.52

average distance to root: 5.11
Data structure. Same as quick-union, but maintain extra array $sz[i]$ to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

```java
return root(p) == root(q);
```

Union. Modify quick-union to:
- Link root of smaller tree to root of larger tree.
- Update the $sz[]$ array.

```java
int i = root(p);
int j = root(q);
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else { id[j] = i; sz[i] += sz[j]; }
```
Weighted quick-union analysis

• Running time.
 • Find: takes time proportional to depth of p and q.
 • Union: takes constant time, given roots.

• Proposition. Depth of any node x is at most $\lg N$.

N = 10
$\text{depth}(x) = 3 \leq \lg N$
Weighted quick-union analysis

- **Running time.**
 - Find: takes time proportional to depth of p and q.
 - Union: takes constant time, given roots.

- **Proposition.** Depth of any node x is at most $\lg N$.

- **Pf.** When does depth of x increase?
 - Increases by 1 when tree T_1 containing x is merged into another tree T_2.
 - The size of the tree containing x at least doubles since $|T_2| \geq |T_1|$.
 - Size of tree containing x can double at most $\lg N$ times. Why?
Weighted quick-union analysis

• Running time.
 • Find: takes time proportional to depth of \(p \) and \(q \).
 • Union: takes constant time, given roots.

• Proposition. Depth of any node \(x \) is at most \(\lg N \).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>(N)</td>
<td>(N)</td>
<td>(1)</td>
</tr>
<tr>
<td>quick-union</td>
<td>(N)</td>
<td>(N^\dagger)</td>
<td>(N)</td>
</tr>
<tr>
<td>weighted QU</td>
<td>(N)</td>
<td>(\lg N^\dagger)</td>
<td>(\lg N)</td>
</tr>
</tbody>
</table>

\(^\dagger\) includes cost of finding roots

• Q. Stop at guaranteed acceptable performance?
• A. No, easy to improve further.
Improvement 2: path compression

- Quick union with path compression. Just after computing the root of \(p \), set the id of each examined node to point to that root.
Improvement 2: path compression

- Quick union with path compression. Just after computing the root of \(p \),
- set the id of each examined node to point to that root.
Improvement 2: path compression

- Quick union with path compression. Just after computing the root of p,
- set the id of each examined node to point to that root.
Improvement 2: path compression

- **Quick union with path compression.** Just after computing the root of \(p \),
- set the id of each examined node to point to that root.
Improvement 2: path compression

- Quick union with path compression. Just after computing the root of p,
- set the id of each examined node to point to that root.
Path compression: Java implementation

- **Two-pass implementation**: add second loop to `root()` to set the `id[]` of each examined node to the root.

- **Simpler one-pass variant**: Make every other node in path point to its grandparent (thereby halving path length).

```java
private int root(int i) {
    while (i != id[i]) {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

- **In practice**: No reason not to! Keeps tree almost completely flat.
Proposition. Starting from an empty data structure, any sequence of M union–find operations on N objects makes at most proportional to $N + M \lg^* N$ array accesses.

- Proof is very difficult.
- But the algorithm is simple!
- Analysis can be improved to $N + M \alpha(M, N)$.

Linear-time algorithm for M union-find ops on N objects?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. No linear-time algorithm exists.

<table>
<thead>
<tr>
<th>N</th>
<th>$\lg^* N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>65536</td>
<td>4</td>
</tr>
<tr>
<td>2^{65536}</td>
<td>5</td>
</tr>
</tbody>
</table>

because $\lg^* N$ is a constant in this universe

Bob Tarjan
(Turing Award '86)

see COS 423

Weighted quick-union with path compression: amortized analysis

in "cell-probe" model of computation
Summary

- **Bottom line.** Weighted quick union (with path compression) makes it possible to solve problems that could not otherwise be addressed.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case time</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>M N</td>
</tr>
<tr>
<td>quick-union</td>
<td>M N</td>
</tr>
<tr>
<td>weighted QU</td>
<td>N + M log N</td>
</tr>
<tr>
<td>QU + path compression</td>
<td>N + M log N</td>
</tr>
<tr>
<td>weighted QU + path compression</td>
<td>N + M lg* N</td>
</tr>
</tbody>
</table>

M union–find operations on a set of N objects

- **Ex.** [10⁹ unions and finds with 10⁹ objects]
 - WQUPC reduces time from 30 years to 6 seconds.
 - Supercomputer won’t help much; good algorithm enables solution.
dynamic connectivity
quick find
quick union
improvements
applications
Union-find applications

• **Percolation.** see also Assignment 1
 • Games (Go, Hex).

✓ **Dynamic connectivity.**
 • Least common ancestor.
 • Equivalence of finite state automata.
 • Hoshen-Kopelman algorithm in physics.
 • Hinley-Milner polymorphic type inference.
 • Kruskal's minimum spanning tree algorithm.
 • Compiling equivalence statements in Fortran.
 • Morphological attribute openings and closings.
 • Matlab's `bwlabel()` function in image processing.
• A model for many physical systems:
 • N-by-N grid of sites.
 • Each site is open with probability p (or blocked with probability $1 - p$).
 • System percolates if and only if top and bottom are connected by open sites.

\[
\begin{array}{c}
\text{percolates} \\
N = 8
\end{array}
\begin{array}{c}
\text{blocked site} \\
\text{empty open site} \\
\text{open site connected to top}
\end{array}
\begin{array}{c}
\text{do not percolate} \\
\text{full open site} \\
\text{no open site connected to top}
\end{array}
\]
A model for many physical systems:

- N-by-N grid of sites.
- Each site is open with probability p (or blocked with probability $1 - p$).
- System percolates if and only if top and bottom are connected by open sites.

<table>
<thead>
<tr>
<th>model</th>
<th>system</th>
<th>vacant site</th>
<th>occupied site</th>
<th>percolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>electricity</td>
<td>material</td>
<td>conductor</td>
<td>insulated</td>
<td>conducts</td>
</tr>
<tr>
<td>fluid flow</td>
<td>material</td>
<td>empty</td>
<td>blocked</td>
<td>porous</td>
</tr>
<tr>
<td>social interaction</td>
<td>population</td>
<td>person</td>
<td>empty</td>
<td>communicates</td>
</tr>
</tbody>
</table>
- Depends on site vacancy probability p.

<table>
<thead>
<tr>
<th>p low (0.4)</th>
<th>p medium (0.6)</th>
<th>p high (0.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>does not percolate</td>
<td>percolates?</td>
<td>percolates</td>
</tr>
</tbody>
</table>
• When N is large, theory guarantees a sharp threshold p^*.
 • $p > p^*$: almost certainly percolates.
 • $p < p^*$: almost certainly does not percolate.

• Q. What is the value of p^*?
Monte Carlo simulation

- Initialize N-by-N whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p^*.

$N = 20$

135 open sites

- full open site (connected to top)
- empty open site (not connected to top)
- blocked site
Q. How to check whether an N-by-N system percolates?

Dynamic connectivity solution to estimate percolation threshold

$N = 5$

open site

blocked site
How to check whether an N-by-N system percolates?

- Create an object for each site and name them 0 to $N^2 - 1$.

Dynamic connectivity solution to estimate percolation threshold
How to check whether an N-by-N system percolates?

- Create an object for each site and name them 0 to $N^2 - 1$.
- Sites are in same component if connected by open sites.
Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
- Create an object for each site and name them 0 to $N^2 - 1$.
- Sites are in same component if connected by open sites.
- Percolates iff any site on bottom row is connected to site on top row.

Brute-force algorithm: N^2 calls to connected()
Dynamic connectivity solution to estimate percolation threshold

• Clever trick. Introduce two virtual sites (and connections to top and bottom).

 • Percolates iff virtual top site is connected to virtual bottom site.

 efficient algorithm: only 1 call to connected()

N = 5

open site

blocked site

virtual top site

top row

virtual bottom site

bottom row
Q. How to model as dynamic connectivity problem when opening a new site?
Dynamic connectivity solution to estimate percolation threshold

• **Q.** How to model as dynamic connectivity problem when opening a new site?
 • **A.** Connect newly opened site to all of its adjacent open sites.

![Diagram showing dynamic connectivity solution]
Percolation threshold

- **Q.** What is percolation threshold p^*?
- **A.** About 0.592746 for large square lattices.

Fast algorithm enables accurate answer to scientific question.

![Percolation Probability Graph](image-url)

- Site vacancy probability p
- Percolation probability
- $N = 100$
- Constant known only via simulation
Subtext of today’s lecture (and this course)

• Steps to developing a usable algorithm.
 • Model the problem.
 • Find an algorithm to solve it.
 • Fast enough? Fits in memory?
 • If not, figure out why.
 • Find a way to address the problem.
 • Iterate until satisfied.

• The scientific method.

• Mathematical analysis.