Lab 11

Objectives:
Learn more about iterators and using in novel ways, including reading data from a
String or directly from a webpage.

Preparation: Review the basics of processing a text file, line by line
1) In part (g) of Lab 3 we explored how to input values from a file and store them in
an array. Review the steps necessary to set up your Scanner to input from a file.

2) Try this program: www.csc.villanova.edu/~map/2014/f14 /examples/Filelnput.java

//***

// FileInput.java Author: MAP

// Demonstrates the use of Scanner to read text file input.
//***

import java.util.Scanner;
import java.io.¥*;

public class FileInput
{

public static void main (String[] args) throws IOException

{
String line;
Scanner fileScan;

File myFile = new File("sample.txt");
fileScan = new Scanner (myFile);

// Read and process each line of the file
while (fileScan.hasNext())
{

line = fileScan.nextLine() ;
System.out.println (line.toUpperCase())

}
}

1) Download and compile this program; create a small text file named sample. txt to
test it. Run FileInput — what does it do?

2) Modify it to use the parameter args[0] of main () as the file name. Do this as follows:
* Replace the use of
File myFile = new File("sample.txt");
with

File myFile = new File(args|[0]);
In jGrasp, select “Run Arguments” from the Build menu, and provide the file name as an
argument (parameter) to main by typing sample. txt in the box that appears above your
program. In this way, you can run your program with different files, without modifying the
code. Try it running FileInput.java with the program itself (FileInput.java) asits
input!

CSC 2014 Java Bootcamp Dr. Papalaskari

A. Scanning from a String

Just as we can use a Scanner to input from a file or System.in, we can also use a
Scanner to “input” from a String!
1) Try this code: Lab11a.java

//******‘k‘k**

// Lablla.java MA Papalaskari

// Simple example: scanning from a String
//‘k‘k‘k‘k‘k‘k**********‘k*******‘k*******‘k**‘k*******‘k************************

import java.util.Scanner;

public class Lablla
{

public static void main(String[] args)

{

Scanner scan = new Scanner(System.in);

System.out.print("Please type 3 words: ");
String line = scan.nextLine();

Scanner scanLine = new Scanner(line);
String wordl = scanLine.next(

)i
String word2 scanLine.next();
String word3 = scanLine.next();

System.out.println("Word 1: " + wordl);
System.out.println("Word 2: " + word2);
System.out.println("Word 3: " + word3);

}
}

Run : Lab11a.java — what does it do?

B. Scanning from a String and doing something useful

Next, we will create Lab11b.java by modifying Lab11a.java so that it does something
more interesting with the input. Our new program will treat the input as a command
for a simple numeric computation.

For example, the input might be:
55 * 83

We want the program to compute and print the product 4565. First, run Labl1a.java
with this input and observe how it picks out the “55”, “*”, “B3” as word1, word2, and
word3, respectively. Note that the code uses scanLine.next () which produces string
tokens and that was fine because word1, word2, and word3 are Strings. But now you
want to use the values 55 and 83 as numbers, so the variables have to be of type

CSC 2014 Java Bootcamp Dr. Papalaskari

double (we could use int, but double will allow you to handle a wider range of
values), and you need to obtain their values using scanLine.nextDouble () instead of

scanlLine.next().

Can you use these ideas to create a simple calculator? Change the prompt from
“Please enter 3 words” to “Calculate: ”

Note that you can test the value of word2.charAt(0) to see if itis equal to ‘+’, *’, etc,
and, accordingly, compute the result. (If you want to be able to handle more than 2
operators, it is best to use a switch statement.)

Sample runs:

----JGRASP exec:

java Labllb

----JGRASP exec:

java Labllb

Calculate: Calculate:
9.3 + 44.7 55 * 83
= 54.0 = 4565.0

C. Input data into an array

The technique described in Parts A and B is also useful for processing data organized
in columns and inputting that into an array. Go back to the code for Part A (NOT Part
B) and modify the code so that it inputs 8 words into an array of 8 Strings. (Be sure to
replace the variables word1, word2 etc by an array word[0], word[1], etc. and use a
for-loop to get the input. The words should then be printed backwards.

Tab delimited data:
Sometimes the input tokens can contain spaces. For example, the “words” could be

country names:
India United States France China Germany Greece South Korea Brazil

These are still just 8 countries! In such situations, a tab can be used as a delimiter, so

the String would be stored as:
"India\tUnited States\tFrance\tChina\tGermany\tGreece\tSouth Korea\tBrazil"

In order for your Scanner to use a delimiter other than whitespace, you need to
specify this before doing any input:

scanlLine.useDelimiter ("\t") ;

Sample run:

----jGRASP exec: java Labllc

Enter 8 country names, all in one line, separated by tabs:
England France Japan India Greece United States
Sierra Leone
South Korea
United States
Greece

India

Japan

France
England

outh Korea Sierra Leone

Note: these are tab characters

CSC 2014 Java Bootcamp Dr. Papalaskari

D. Processing data from text files, organized in columns (Combine Parts A & C)
The technique described in Part C is useful for processing text files containing data
organized in columns. We now modify FileInput.java (from the preparation steps,
above) so that after it inputs each line, it uses the technique of Lablic. java (i.e. a
second Scanner) to “scan” 8 words from each line in the file and store these words in
an array, then print the contents of the array backwards. Try this with the following
file: http://www.csc.villanova.edu/~map/2014/f14 /examples/eightwords.txt

Sample output:
Line: England France Japan United Arab Emirates Greece United States South Korea
Sierra Leone

Sierra Leone

South Korea

United States

Greece

United Arab Emirates
Japan

France

England

Line: apple orange asian pear fig persimmon grape raspbery
pineapple

pineapple

raspbery

grape

persimmon

fig

asian pear

orange

apple

Line: black white gray light gray dark gray red blue green
green

blue

red

dark gray

light gray

gray

white

black

E. (Optional) Input directly from a website
Would you like your program to access a website directly? Here is how. You need to
1) Add another import directive at the beginning or your program:

import java.net.URL;

2) Set up your Scanner to read from the url instead of a file. Here is an example:

String myurl = "
http://www.csc.villanova.edu/~map/2014/f14/examples/eightwords. txt";
InputStream inStream = new URL(myurl) .openStream() ;

Scanner webScan = new Scanner (inStream);

3) Now you can use webScan asany other Scanner object, to input from a
webpage as if it were any other text file. (Try it running FileInput. java with input
FileInput.java but this time, use the version that is online.)

This technique will work with most webpages, as long as they can be read as text
(including html files).

CSC 2014 Java Bootcamp Dr. Papalaskari

