
CSC2014 Java Bootcamp Dr. Papalaskari Fall 2014

Lab	
 10	
 	
 	
 	
 	
 Name:________________________	
 	
 Checked:______	

Objectives:	

Learn about listeners and events, to create interactive graphical user interfaces.

Files:	
 	

http://www.csc.villanova.edu/~map/1051/Chap04/SmilingFace.java	

http://www.csc.villanova.edu/~map/1051/Chap04/SmilingFacePanel.java	

	

http://www.csc.villanova.edu/~map/1051/Chap04/PushCounter.java	

http://www.csc.villanova.edu/~map/1051/Chap04/PushCounterPanel.java	

	

A.	
 Adding	
 a	
 button	
 to	
 SmilingFacePanel.java:	
 	

Before you begin, download and compile SmilingFace.java and SmilingFacePanel.java;
run SmilingFace.java and observe the panel it creates.

1. Import the class JButton from the package javax.swing, i.e., add the import
statement:

 import javax.swing.JButton;

2. Add an instance variable for the button – let’s call it clicker

 private JButton clicker;

3. In the SmilingFacePanel constructor, instantiate a JButton object and assign it
to clicker; then add the button to the panel.

 clicker = new JButton("click here");

 add (clicker);

clicker represents a button that may be associated with an action. For the moment it
does nothing when clicked, but compile your program and run it anyway. You should see
the same picture, but with a button on it. When you click on the button, nothing happens.
Next, we will fix this - make something happen...

 B.	
 Experiment	
 with	
 PushCounterPanel:	
 	

Download and compile PushCounter.java and PushCounterPanel.java; run
PushCounter and observe the behavior of the button.

CSC2014 Java Bootcamp Dr. Papalaskari Fall 2014

The PushCounterPanel.java uses a JButton object. Just like our program, above,
it is instantiated and added to the panel in the constructor.

//**
// PushCounterPanel.java Authors: Lewis/Loftus
// Demonstrates a graphical user interface and an event listener.
//**
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class PushCounterPanel extends JPanel
{
 private int count;
 private JButton push;
 private JLabel label;

 //---
 // Constructor: Sets up the GUI.
 //---
 public PushCounterPanel ()
 {
 count = 0;

 push = new JButton ("Push Me!");
 push.addActionListener (new ButtonListener());

 label = new JLabel ("Pushes: " + count);

 add (push);
 add (label);

 setPreferredSize (new Dimension(300, 40));
 setBackground (Color.cyan);
 }

 //***
 // Represents a listener for button push (action) events.
 //***
 private class ButtonListener implements ActionListener
 {
 //--
 // Updates the counter and label when the button is pushed.
 //--
 public void actionPerformed (ActionEvent event)
 {
 count++;
 label.setText("Pushes: " + count);
 }
 }
}

CSC2014 Java Bootcamp Dr. Papalaskari Fall 2014

Associating	
 an	
 action	
 with	
 a	
 button	

The action(s) associated with clicking on a button are handled through something called
an ActionListener. Observe that the PushCounterPanel class contains, inside
it, the definition of another class: the ButtonListener class (the class that handles
the event that a button gets pushed in the PushCounterPanel class). Because it is
defined inside thePushCounterPanel.java class, ButtonListener class is
called an inner class.

The ButtonListener class only has one method, actionPerformed() that
specifies what has to happen (in this case a counter is incremented and the text in a label
is replaced with the new value of the counter).

Before proceeding, answer/do the following:

1. What is the name of the variable representing the button in PushCounterPanel
class?_____________

2. What is the name of the variable representing the button in the SmilingFacePanel
class (as modified in part A above)?_____________

3. Circle the line of code that associates the action with the button in PushCounterPanel
class. Copy it out here:

4. Modify actionPerformed() (method in the inner class) so that when the button is

clicked, the background color changes to a different color.

C.	
 Implement	
 an	
 action	
 for	
 the	
 button	
 in	
 SmilingFacePanel	

1. Import the package java.awt.event.*

2. We will create a listener for clicker named ClickerListener as an inner class
in SmilingFacePanel. The action will be to cause the background to change to
black when clicker is pressed. It should not do anything else. We will do this as follows:

• Add instance variables for red, green, and blue to be used in the background
color. These are integers:

 private int red, green, blue;

CSC2014 Java Bootcamp Dr. Papalaskari Fall 2014

• Add the following code to your SmilingFacePanel class.

 private class ClickerListener implements ActionListener
 {
 public void actionPerformed (ActionEvent event)

 {
 red = 0; green = 0; blue = 0;
 setBackground (new Color(red, green, blue));
 }

 }

• The clicker button should be controlled by the ClickerListener – we specify this
in the constructor, as follows:

clicker.addActionListener(new ClickerListener());

3. Now we will add another button that, rather than causing the background to turn black
with a single click, it will increase the amount of red in the background, gradually.

a. Follow the steps you used to implement the clicker button to add another
JButton called redClicker with the text "More red".

b. In the constructor, assign the values: red=0; green=0; blue=0;
c. Still in the constructor, create a new color for the background, using red,

green, blue:

 setBackground (new Color(red, green, blue));

// this is the color black when red=green=blue=0

d. Add a listener for redClicker named RedListener (copy/paste the code for
ClickerListener and adapt it). In the actionPerformed() method of this
listener:

§ red +=20;
§ setBackground (new Color(red, green, blue));

What happens when you keep clicking the “More red” button repeatedly?

(Fix the actionPerformed() method to prevent this from happening.)

4. Once you get the red button to work, repeat the above steps to create buttons to
increment the amount of blue and green.

D.	
 Implement	
 a	
 button	
 to	
 roll	
 a	
 die	
 in	
 your	
 HappinessFacePanel	

Using the class HappinessPanel from the previous lab, add a button that causes one of the
dice to be rolled.

