Lab 9

Objectives:
More practice designing classes and methods.
Practice creating graphical objects.

Useful Links:

www.csc.villanova.edu/~map/1051/Chap04/Splat.java
www.csc.villanova.edu/~map/1051/Chap04/SplatPanel.java
www.csc.villanova.edu/~map/1051/Chap04/Circle.java
www.csc.villanova.edu/~map/1051/Chap02/Snowman.java
www.csc.villanova.edu/~map/1051/Chap04/Die.java

lecture slides: www.csc.villanova.edu/~map/2014/f14/04GUIclasses.pdf

1. Getting Started

* Download and test the Splat. java(driver), SplatPanel. java, and
Circle. java classes.

* Review the code to understand it.

* Incorporate two more circles in the SplatPanel.

* Change the background color to gray.

* Increase the size of SplatPanel to 1200x800 or even larger to accommodate more
objects that will be added later.

In steps 2-5, we will change this to a program that displays smiley faces instead of circles.

2. Renaming Classes
We will be turning the circles into smileys. We begin by renaming all the classes as follows:

Splat = Happiness

SplatPanel - HappinessPanel

Circle = Smiley
Note: It is best to create a separate subfolder for the files in this exercise (and nothing else, not
even Splat, SplatPanel, and Circle) to avoid problems going forward.

You will need to rename the constructors in SplatPanel and Circle. Go through the
code in all three classes to make any other changes necessitated by the change of class
names (many changes are needed - eliminate all occurences of SplatPanel and Circle
throughout!). Re-compile all the classes and run to make sure everything still works and
that the displayed image looks exactly the same as before.

In the following steps, we will be turning the circles into smiley faces, but so far they should
still look just like circles.

CSC 2014 Java Bootcamp Dr. Papalaskari Fall 2014

3. Simplify the Smiley class by eliminating an instance variable

Determining the position of the eyes and smile will depend on the size of the circle that
represents the face, so we will simplify our work by making all the circles have a fixed
diameter, say 50 pixels. (If you like the challenge of adjusting to different diameters, you
may omit this step.)

* Inthe Smiley class, replace diameter with a constant named DIAMETER (i.e,,
capitalize its name and add the modifier £inal in the declaration), and set it to 50.
Replace diameter with DIAMETER in the draw () method. Eliminate diameter
from the parameters of the constructor eliminate the accessor and mutator methods
for diameter altogether, as these no longer make sense.

* Simplify also the HappinessPanel class - the code should no longer give values for
the diameter parameter of the Smiley objects.

Test your program before proceeding; it should still look about the same, except the circles
are now all the same size.

4. Drawing a smiley face

In the Smiley class, modify the draw () method so that it adds black ovals and an arc on
the circle, so as to make a smiley face.

Recompile the Smiley class and run Happiness again to test your code. You should see
smileys where you had circles. You will probably need to make some adjustments to fix
lopsided faces or missing eyes (Note: if you miscalculated, they may have ended up outside
the circle, so look around!).

5. Enhance the Smiley class
Modify the Smiley class further by adding some attributes:
name (aString), age (anint), and happiness (aboolean)

You will also need to modify the way the constructor and the draw () methods work:

* Modify the exiting constructor (the one that only has color, x, and y as parameters):
it should also set the name, age, and happiness to some default values, such as
“Smiley”, 0, and true, respectively.

* Add another constructor with more parameters that allows you to set the name,
age, and happiness to other values.

* Modify the draw () method so that the smiley looks different depending on the age
and happiness state and to include the name (Hint: Use the Graphics method
drawString() to display the name below the Smiley).

Test your code well before proceeding.

CSC 2014 Java Bootcamp Dr. Papalaskari Fall 2014

6. Create a Snowman class

Create a Snowman class, similar to the Smiley class. You can use much of the code from
the Snowman applet - the constants MID and TOP will now be your instance variables,
corresponding to the x, y position, as in the Smiley class. (You should rename MID and
TOP to x and y or to mid and top and declare them private). You don’t need any other
instance variables, unless you plan to have different versions of the Snowman (eg: arms up
vs. arms down).

Test your code by drawing a few Snowmen in your HappinessPanel.

7. Enhance the Die class by adding a draw() method
A die can be depicted by a white square outlined in black, with the number inside (or you
can take the challenge and try to make it look like a real die, but drawing the little dots
corresponding to the faceValue is tricky).
Note that the Die class does not have x and y (position) attributes. Rather than adding
these attributes, we will take a different approach, and incorporate x, y as parameters to
the draw () method that we are writing. Thus, in the paintComponent() method of
HappinessPanel, we will use:

diel.draw(page, 40, 60);

(instead of diel.draw (page) ; which assumes diel has a position)

Therefore, the draw() method in the Die class will need a different heading:
public void draw(Graphics page, int x, int y)
The method definition should use the position %, y to draw the die:

a. use fillRect() to create a white square (or use it twice to create a white square with
a black outline)

b. use drawString() to put the String corresponding to faceValue inside the white
square. Note: remember that faceValue is an int, so use Integer.toString(faceValue)
to convert it to a String, as is done in the original toString() method of Die class.

c. Testyour code by drawing a few dice in your HappinessPanel.

d. Test it again, inserting diel.roll() right before the draw() method is invoked in the
paintComponent() method of HappinessPanel, for one of the dice. Observe the dice
as you resize the window: note that the paintComponent() method is invoked every
time the window is resized, so if a die is rolled in paintComponent(), you should see
that die’s faceValue change as you resize.

CSC 2014 Java Bootcamp Dr. Papalaskari Fall 2014

