Combinatorics

Coun@ng Principles

Pigeonhole Principle: \(k\) pairwise disjoint subsets of a set of \(n\) elements ...
\(\rightarrow\) at least one of them will have cardinality \(\geq \left\lceil \frac{n}{k} \right\rceil\)

Multiplication Principle: \(|A \times B \times C| = |A| \cdot |B| \cdot |C|

Addition Principle: \(|A \cup B \cup C| = |A| + |B| + |C|\)
(for pairwise disjoint sets only)

Inclusion/Exclusion Principle: \(|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|\)

Permutations and Combinations – Review from Chapter 6

\(P(n,k) = \text{k-permutations of a set with n elements}\)
- order matters
- Formula: \(P(n,k) = \frac{n!}{(n-k)!}\)

\(C(n,k) = \text{k-combinations of a set with n elements}\)
- order does NOT matter
- Formula: \(C(n,k) = \frac{n!}{(n-k)!k!}\)

Product rule
divide by \(k!\) due to overcounting

Pascal’s Triangle

\[\begin{array}{cccccc}
1 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
\end{array}\]
Pascal’s Triangle

- Pascal’s Triangle represents the identity:

\[
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}
\]

for \(0 \leq k \leq n\).
Binomial Refresher

- A binomial expression is simply the sum of two terms
 - For example:
 - \((x+y)\)
 - \((x+y)^2\)
 - When a binomial expression is expanded, the binomial coefficients can be “seen”
 - For example:
 \[
 (x+y)^2 = x^2 + 2xy + y^2
 \]

Binomial Coefficients & Combinations

- Explore the following:
 \[
 (x+y)^3 = (x+y)(x+y)(x+y)
 \]

 \[
 xxx + xxy + xyy + yxx + yxy + yyx + yyy
 \]

 \[
 x^3 + 3x^2y + 3xy^2 + y^3
 \]

- Binomial Theorem
 \[
 (x+y)^n = \sum_{k=0}^{n} C(n,k)x^{n-k}y^k
 \]

Some Corollaries of the Binomial Theorem

Corollary 1 \((a = b = 1)\):

Corollary 2 \((a = 1, b = -1)\):

Corollary 3 \((a = 1, b = 2)\):
Combinations with Repetition

- **Example:** How many ways are there to select any 4 fruits from a bowl containing oranges, apples, and bananas?

![Fruit combinations](http://www.pexels.com/photos-of-fruit-in-a-bowl/)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Combinations with Repetition

- **Example:** How many ways are there to select 12 bills from a cash box containing $1, $5, $10, $20 and $50 bills?

![Stars & Bars Technique](http://www.pixell.club/pictures-of-fruit-in-a-bowl/)

<table>
<thead>
<tr>
<th>$1</th>
<th>$5</th>
<th>$10</th>
<th>$20</th>
<th>$50</th>
</tr>
</thead>
</table>

Combinations with Repetition

- **Theorem:**
 - There are \(C(k + n - 1, k) \) \(k \)-combinations from a set with \(n \) unique elements when repetition of elements is allowed.

- **Previous Example:**
 - \(n = 3 \) different fruits
 - \(k = 4 \) items to select
 - \(C(4+3-1, 4) = C(6,4) = \frac{6!}{(6-4)!4!} = 15 \)
Combination with Repetition

Example
- How many ways can 6 balls be distributed into 9 different bins?

Solution
- \(n = 9 \) unique bins \(\Rightarrow 8 \) bars
- \(r = 6 \) balls \(\Rightarrow 6 \) stars
- 6+8 positions, choose 6 for the stars:
 - \(C(6+8,6) = C(14,6) \)

Stars and Bars: Integer solutions

Example: \(a + b + c = 5 \)

- How many integer solutions with \(a,b,c \geq 0 \)?

- How many integer solutions with \(a,b,c \geq 1 \)?

Example: Anagrams

How many different strings can be made by reordering the letters of the string SUCCESS?

Solution:
- 3 S’s, 2 C’s, 1 E and 1 U
- \(C(7,3) \) to place 3 S’s
- \(C(4,2) \) to place the C’s
- \(C(2,1) \) to place the E
- \(C(1,1) \) to place the U
- \(C(7,3)C(4,2)C(2,1)C(1,1) = \frac{7!}{3!4!} \times \frac{2!}{2!} \times \frac{1!}{1!} \times \frac{1!}{1!} \)

k-Permutations with Repetition

The number of different permutations of \(k \) objects of \(n \) types, where there are \(k_1 \) identical objects of type 1, \(k_2 \) identical objects of type 2 ... and \(k_n \) identical objects of type \(n \), with \(k_1 + k_2 + k_3 + \ldots + k_n = k \):

\[
\frac{k!}{k_1!(k-k_1)!} \cdot \frac{(k-k_1)!}{k_2!(k-k_1-k_2)!} \cdot \ldots \cdot \frac{(k-k_1-k_2-\ldots-k_{n-1})!}{k_n!(k-k_1-k_2-\ldots-k_{n-1}-k_n)!}
\]

\[
= \frac{k!}{k_1!k_2!\ldots k_n!}
\]