Functions

CSC 1300 – Discrete Structures
Villanova University

Functions: Basic terminology

A function \(f \) from \(A \) to \(B \) assigns exactly one element of \(B \) to each element of \(A \).

\[f : A \rightarrow B \]

We write \(f(x) = y \) if the function \(f \) assigns \(y \) to \(x \).

- The range of \(f \) is the set of all images of elements of \(A \).
- \(y \) is called the image of \(x \) (under \(f \)).
- The image of a subset \(S \) of \(A \), denoted by \(f(S) \), is the subset of \(B \) that consists of the images of the elements of \(S \):
 \[f(S) = \{ f(x) \mid x \in S \} \]

Example: Let \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) be defined as \(f(x) = x + 1 \). Let \(E \) be the set of even integers. What is the image of \(E \)?

Functions: examples

- \(x^2 \), \(e^x \), |\(x \)|, \(\log x \), \(\ln x \)
- Floor \(\lfloor x \rfloor \)
- \(n! \)
- \(n \mod 5 \)
- \(|S| \) (where \(S \) is a finite subset of \(\mathbb{Z} \))
- ASCII table
- Identity function

One-to-One Functions

- A function \(f : X \rightarrow Y \) is one-to-one (or injective) iff for each \(y \in Y \) there is at most one \(x \in X \) with \(f(x) = y \).
- Examples:
 \[\{(1,5), (2,3), (4,5)\} \quad f(x) = x^2 \text{ for } x \in \mathbb{Z} \]
Onto Functions

A function \(f : X \to Y \) is onto (or surjective) if for each \(y \in Y \) there exists an \(x \in X \) with \(f(x) = y \) (co-domain = range)

\[
\begin{array}{c|c|c}
\text{Onto} & \text{Neither one-to-one nor onto} & \text{One-to-one and onto} \\
\{(1,2), (2,4), (3,6), (4,6) \} & f(x) = x^2 \text{ for } x \in (1,0,1) \text{ and } y \in (1,0,2) & f(x) = x^2 \text{ for } x \in (1,0,2) \text{ and } y \in (1,0,4)
\end{array}
\]

Onto (but not one-to-one)

Neither one-to-one nor onto

One-to-one and onto (Bijection)

Inverse Function

- If a function \(f : A \to B \) is a bijection, the inverse function \(f^{-1} : B \to A \) is defined and is also a bijection mapping every \(y \in B \) to a unique \(x \in A \). Hence, \(f^{-1}(y) = x \) when \(f(x) = y \).

- Examples:
 - \(f = \{ (a,1), (b,2), (c,3) \} \)
 - \(f(x) = x+1, \ x \in \mathbb{Z} \)
 - \(f(x) = x^2, \ x \in \mathbb{R}^+ \)

Bijections

- A function \(f \) from \(X \) to \(Y \) is a bijection (or a one-to-one correspondence) if \(f \) is both one-to-one and onto (i.e., both injective and surjective).

Example: Let \(f(x) = x+1 \). Is \(f \) a bijection?
 - if the domain and codomain are \(\mathbb{N} \)
 - if the domain and codomain are \(\mathbb{Z} \)
 - if the domain and codomain are \(\mathbb{R} \)

Composition of Functions

The composition of the functions \(f : A \to B \) and \(g : B \to C \), denoted by \(g \circ f \), is defined by:

\[
(g \circ f)(x) = g(f(x))
\]

Note: the range of \(f \) must be a subset of the domain of \(g \).

Example: Let \(A = B = C = \mathbb{R}^+ \)
 - \(f(x) = 3x + 2 \)
 - \(g(x) = \frac{1}{x} \)

- If \(f \) and \(g \) are one-to-one, so is \(g \circ f \)
- If \(f \) and \(g \) are onto, so is \(g \circ f \)
- If \(f \) and \(g \) are bijections, so is \(g \circ f \)
- If \(f : A \to B \) is bijective, then
 - \((f \circ f^{-1})(x) = x \) (identity on \(B \))
 - \((f^{-1} \circ f)(x) = x \) (identity on \(A \))