Functions

CSC 1300 – Discrete Structures
Villanova University
Functions: Basic terminology

A function \(f \) from A to B assigns exactly one element of B to each element of A.

\[f : A \rightarrow B \]

We write \(f(x) = y \) if the function \(f \) assigns \(y \) to \(x \)

- The range of \(f \) is the set of all images of elements of A.
- \(y \) is called the image of \(x \) (under \(f \)).
- The image of a subset \(S \) of A, denoted by \(f(S) \), is the subset of B that consists of the images of the elements of \(S \):
 \[f(S) = \{ f(x) \mid x \in S \} \]

Example: Let \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) be defined as \(f(x) = x+1 \). Let \(E \) be the set of even integers. What is the image of \(E \)?
Functions: examples

- $x^2, e^x, |x|, \log_2 x, \ln x$
- Floor $\lfloor x \rfloor$
- $n!$
- $n \mod 5$
- $|S|$ (where S is a finite subset of \mathbb{Z})
- ASCII table
- Identity function
One-to-One Functions

• A function $f : X \rightarrow Y$ is **one-to-one** (or **injective**) iff for each $y \in Y$ there is at most one $x \in X$ with $f(x) = y$

• Examples:

 $\{(1,5), (2,3), (4,5) \}$ \hspace{1cm} $f(x) = x^2$ for $x \in \mathbb{Z}$

\[\begin{array}{c|c|c|c|c|c|c|c}
 & 1 & 2 & 4 & 5 & 6 \\
\hline
1 & 5 \\
2 & 3 \\
4 & 6
\end{array} \quad \begin{array}{c|c|c|c}
1 & 1 \\
0 & 0 \\
-1 & -1
\end{array}\]
Onto Functions

A function \(f : X \rightarrow Y \) is \textbf{onto} (or \textbf{surjective}) if for each \(y \in Y \) there exists an \(x \in X \) with \(f(x) = y \)
(co-domain = range)

\[\{(1,2), (2,4), (3,6), (4,6) \} \]

\(f(x) = x^2 \) for \(x \in \{1,0,-1\} \)
and \(y \in \{1,0,2\} \)

\(f(x) = x^2 \) for \(x \in \{1,0,2\} \)
and \(y \in \{1,0,4\} \)

\textbf{Onto} (but not one-to-one)

\textbf{Neither one-to-one nor onto}

\textbf{One-to-one and onto (Bijection)}
Bijections

• A function f from X to Y is a bijection (or a one-to-one correspondence) if f is both one-to-one and onto (i.e., both injective and surjective).

Example. Let $f(x) = x + 1$. Is f a bijection?

• if the domain and codomain are \mathbb{N}?
• if the domain and codomain are \mathbb{Z}?
• if the domain and codomain are \mathbb{R}?
Inverse Function

• If a function \(f: A \rightarrow B \) is a bijection, the inverse function \(f^{-1}: B \rightarrow A \) is defined and is also a bijection mapping every \(y \in B \) to a unique \(x \in A \). Hence, \(f^{-1}(y) = x \) when \(f(x) = y \).

• Examples:
 - \(f = \{ (a,1), (b,2), (c,3) \} \)
 - \(f(x) = x+1, \; x \in \mathbb{Z} \)
 - \(f(x) = x^2, \; x \in \mathbb{R}^+ \)
Composition of Functions

The composition of the functions \(f:A \to B \) and \(g:B \to C \), denoted by \(g \circ f \) is defined by:

\[
(g \circ f)(x) = g(f(x))
\]

Note: the range of \(f \) must be a subset of the domain of \(g \).

Example: Let \(A=B=C=\mathbb{R}^+ \)

\[
\begin{align*}
 f(x) &= 3x + 2 \\
 g(x) &= \frac{1}{x}
\end{align*}
\]

- If \(f \) and \(g \) are one-to-one, so is \(g \circ f \)
- If \(f \) and \(g \) are onto, so is \(g \circ f \)
- If \(f \) and \(g \) are bijections, so is \(g \circ f \)
- If \(f:A \to B \) is bijective, then
 - \((f \circ f^{-1})(x) = f(f^{-1}(x)) = x \) (identity on \(B \))
 - \((f^{-1} \circ f)(x) = f^{-1}(f(x)) = x \) (identity on \(A \))