Proofs in Computer Science

• Establishing correctness and efficiency of algorithms
• Verification of program correctness
• Establishing that an operating system is secure
• Establishing that certain goals cannot be achieved (eg: creating a universal program-correctness checker or finding a more efficient algorithm)
• Making inferences in AI
• Establishing the integrity of a database
Basic Terminology

Axiom (postulate) – underlying assumption, does not require a proof

Rules of inference – used to draw conclusions from other assertions

Proof of a statement \mathbf{A} – a sequence of statements, each of which is:
- an axiom or
- follows from one or more earlier statements
 and the last statement in the sequence is \mathbf{A}

Theorem – a statement that has been proved

Lemma – a theorem used in the proof of other theorems

Corollary – a theorem that immediately follows from another theorem

Conjecture – a statement that we would like to prove
Famous Conjectures

Fermat’s Last Theorem (17th century)
Equation $x^n + y^n = z^n$ has no non-zero integer solutions for $n > 2$.
– a conjecture for over 300 years → proved by Andrew Wiles (Princeton, 1994)

Goldbach’s Conjecture (18th century)
Every even integer greater than 4 is the sum of two primes.
– still neither proved nor disproved

P ≠ NP Conjecture (1970s)
There are problems that cannot be solved by any polynomial-time algorithm (i.e., running time grows slower than exponentially with input size), but whose guessed solutions can be verified by a such an algorithm.
– still neither proved nor disproved

3x + 1 Conjecture (1950s)
If we repeatedly apply the transformation that sends an even integer x to $x/2$ and an odd integer to $x → 3x + 1$ we will eventually reach 1. (eg: $13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1$
– still neither proved nor disproved
Famous Proofs

\[\alpha^2 + \beta^2 = \gamma^2 \]

\[\sqrt{2} \text{ is irrational} \]

| R | \# Q |
Open Sentences

Declarative sentences containing *variable(s)* representing objects from some set D called the *domain of discourse* (or just the *domain*)

- Truth of open sentence depends on value(s) of variables
- Notation: $P(x)$ or $Q(x,y,z)$
- Also called *Propositional functions* or *open propositions*

Examples

- $P(x) =$ “x is even” with domain the Natural numbers

 \[P(2) = \quad P(3) = \]

- $Q(x) =$ x is enrolled in CSC 1051 and CSC 1300 this semester

- $R(x,y) =$ x loves y

- $M(x,y) =$ x loves y and y loves z

- $S(x) =$ x is even or x is odd
Universal quantifier

Definition: *universal quantification* of \(P(x) \)

“\(P(x) \) is true for all values of \(x \) in the domain of discourse \(S \)”

“for all \(x \in S, P(x) \)”

“for every \(x \in S, P(x) \)”

\(\forall x \in S, P(x) \)

universal quantifier
Examples of universal quantification

\(\forall x \in \mathbb{N}, (x + 0 = x) \)

\(\forall x \in \mathbb{N}, (x^2 > x) \)

\(\forall x \in D, P(x) \)
 where \(D = \{x: x \text{ is a CSC 1300 student}\} \) and
 \(P(x): \text{“}x \text{ loves CS”} \)

Let \(S = \text{set of all sentient beings} \)
 \(M(x): \text{“}x \text{ is mortal”} \) and
 \(H(x): \text{“}x \text{ is a human”} \)

Express the proposition: “every human is mortal”
Existential quantifier

Definition: *existential quantification* of $P(x)$

“There exists an element x in the domain of discourse S such that $P(x)$ is true”

“there is an $x \in S$ such that $P(x)$”

“for some $x \in S$, $P(x)$”

$$\exists x \in S, P(x)$$

existential quantifier.
Examples of existential quantification

True or false?

\[\exists x \in \mathbb{N}, \ (x + x = x \times x) \]

\[\exists x \in \mathbb{N}, \ (x = x + 1) \]

\[\exists x \in D, P(x) \]

where domain \(D = \{x: x \text{ is a CSC 1300 student}\} \) and

\[P(x): \ "x \text{ loves CS}" \]

Let \(Q(x) \) denote “\(x \) is a sophomore” with domain \(D \).
Express the sentence: “there is a sophomore who loves CS”
Example

Let $S = \{1, 2, 3\}$ and let $R(x): \ "(x^2 + 3x)/2 \text{ is even}"$ be an open sentence over the domain S

What are the truth values of $R(x)$ for each x in S?

State $\forall x \in S, \ R(x)$... is it true?

State $\exists x \in S, \ R(x)$... is it true?
Generalized De Morgan Laws of Logic

\[
\neg \forall x \in D, P(x) \equiv \exists x \in D, \neg P(x)
\]

“Not everyone loves CS” \equiv “There is someone who does not love CS”

\[
\neg \exists x \in D, P(x) \equiv \forall x \in D, \neg P(x)
\]

“No one who loves CS” \equiv “Everyone does not love CS”

Better example:

\[
\neg \exists x \in D, \neg P(x) \equiv
\]
Exercise

State the negations of the following sentences:
“For every rational number \(r \), the number \(1/r \) is rational.”

“There exists a rational number \(r \), such that \(r^2 \) is rational.”
Expressions with several quantifiers

Let the universe of discourse be the set of all students (of VU).

Let

\[C(x) \text{ means “} x \text{ has a computer”} \]
\[F(x,y) \text{ means “} x \text{ and } y \text{ are friends”} \]

Translate the following into English:

- \[\forall x C(x) \]
- \[\forall x [C(x) \lor \exists y (F(x,y) \land C(y))] \]
- \[\exists x \lnot \exists y F(x,y) \]
Does the order of the quantifiers matter?

— No, if we have several consecutive quantifiers of the same type:
\[
\forall x \forall y Q(x, y) \equiv \forall y \forall x Q(x, y) \quad \exists x \exists y Q(x, y) \equiv \exists y \exists x Q(x, y)
\]

— Yes, if we have different quantifiers:
\[
\forall x \exists y Q(x, y) \not\equiv \exists y \forall x Q(x, y)
\]

Example: Let \(Q(x, y) \) mean “\(x+y=0 \)”, and let the universe of discourse be the set of all real numbers. What is the truth value of:

\[
\forall x \exists y Q(x, y) \quad ?
\]

\[
\exists y \forall x Q(x, y) \quad ?
\]
Types of proofs

- direct
- indirect (by contrapositive)
- proof of biconditional
- by contradiction
- proof by cases
- Existence proof:
 - by example for existential sentence
 - or by counterexample for universal (refutation)
 - non-constructive existence proof (refutation of universal)
- proof by mathematical induction
Proving \(p \to q \)

- **Direct Proof**
 \[p \to q \]

- **Indirect Proof / Contrapositive**
 \[p \to q \equiv \neg q \to \neg p \]

- **Proof by Contradiction**
 \[p \to q \equiv (p \land \neg q) \to (r \land \neg r) \]
Direct Proof

To prove $p \rightarrow q$:

Suppose p is true; prove that q must also be true.

Example:

If n is even, then $5n^3$ is also even.
Exercise:

Prove that if a and b are even, then $a+b$ is also even
Indirect Proof

Prove $p \rightarrow q$ by proving contrapositive: $\neg q \rightarrow \neg p$

Example:
– If $n \cdot m$ is odd, then an $n \times m$ grid cannot be tiled with dominoes.
Exercise

Prove: If \(n - 5 \) is even, then \(n \) is odd.
Proofs of Biconditionals

Usually requires two separate parts:

\[p \rightarrow q \text{ and } q \rightarrow p. \]

• **Example:** An integer \(n \) is odd iff \(n^2 \) is odd.
Contradiction Proof

Prove \(s \) by showing that \(\neg s \) is absurd!

- \(\neg s \rightarrow F \) (Reductio ad absurdum)

Famous Example: \(\sqrt{2} \) is irrational
Proofs by cases

A *proof by cases* is based on partitioning the theorem’s domain into subdomains and proving the theorem separately for each of these subdomains.

Definition:

\[[x], \text{ called the floor of } x, \text{ is the largest integer } \leq x; \]
\[\lceil x \rceil, \text{ called the ceiling of } x, \text{ is the smallest integer } \geq x. \]

Example: \(\forall n \in \mathbb{Z}, \ [n/2] + [n/2] = n \)
Proofs, examples, and counterexamples: $\forall x P(x)$

For universal statements:

- Checking validity of a theorem for specific examples does NOT constitute a proof (unless the examples exhaust all the values in the theorem’s domain, which is impossible if the latter is infinite).

- Just a single example suffices to disprove a theorem. (Such an example is usually called a counterexample).
Proofs, examples, and counterexamples $\exists x \ P(x)$

For existential statements:

- A single example suffices to prove the theorem (constructive proof).

- Alternatively, using contradiction, prove that it is not possible for such a thing not to exist. (non-constructive proof)
 - Show that a player in a game has a winning strategy without actually saying what it is!
 - Famous proof: There exist irrational x, y such that x^y is rational
Which Proof Method?

1. Begin with a direct proof approach
2. If this fails, try either
 – indirect / contrapositive approach
 – proof by contradiction
 – proof by cases
 – a combination...

 • If all else fails try *mathematical induction*