Permutations and Combinations

CSC 1300 – Discrete Structures
Villanova University

Permutations

- A permutation is an ordering of objects
 - For example, 3 blocks can be ordered 6 ways

There are $n!$ permutations of n elements
- Easily proved using the Multiplication principle

Combinations

- What if all that matters is which blocks you select, not the order?
- A combination is an unordered selection of elements in a set
- Example: a 3-combination from a set of 12 colored blocks is simply a subset of cardinality 3.

$C(n,k) = \# \text{ of } k\text{-combinations of a set with } n \text{ elements}$

Choice notation:

$n \choose k$

Formula:

$C(n, k) = \binom{n}{k} = \frac{n!}{(n - k)! \cdot k!}$

Example: the number of ways to form a committee of 4 members from a department of 13 faculty

- denoted $C(13,4)$ or $\binom{13}{4}$
k-Permutations

\[P(n,k) = \text{# of } k\text{-permutations of a set with } n \text{ elements} \]

- The number of ways to permute \(k \) out of \(n \) items
- Similar to combinations, but \textbf{order matters}

- Formula:
 \[P(n,k) = \frac{n!}{(n-k)!} \]

Permutations

- \textbf{Example:} the number of ways to choose 4 of the 13 faculty to teach upper level electives.
- denoted \(P(13,4) \)

Exercises

Compute (a) \(\frac{100!}{53!} \), (b) \(P(8,2) \), (c) \(\frac{6!}{2!} \), (d) \(\frac{P(7,3)}{P(7,4)} \), (e) \(\frac{m!}{(n-1)!} \).

Exercises

\textbf{Watch out for wording:}

How many different ways are there of selecting 5 people from a group of 100 people to serve on a panel?

\textbf{vs.}

How many different ways are there of selecting 5 people from a group of 100 people to serve on a panel and seating them in a row of 5 chairs?
Exercises

Think about what you are counting:
How many subsets of \{1, 2, 3, 4, 5, 6, 7, 8, 9\} contain exactly three elements?

- contain exactly three elements, all of which are odd numbers?

- list them all!

There are 4 mathematics books, 3 computer science books and 2 engineering books to be placed on a book shelf.

- In how many ways can this be done?

- In how many ways can these books be placed on a book shelf if the books on the same subject must be grouped together

Properties of Combinations

\[C(n,0) = \quad \text{for any } n \geq 0 \]

\[C(n,n) = \]

\[C(n,k) = C(n, n-k) \quad \text{for any } 0 \leq k \leq n \]

\[C(n,0) + C(n,1) + \ldots + C(n,n) = \quad \text{for any } n \geq 0 \]

Five friends went on a Spring Break holiday together....

They would like to have pictures with all combinations of them to post on social media. They already have a picture with all of them (at the airport) and none of them (view from the hotel).

- How many additional pictures do they need to ensure they have pictures of themselves in all possible groupings of:
 - 1 person
 - 2 people
 - 3 people
 - 4 people

- Now compute the total number of additional pictures in two ways:
 - (i) by summing the above numbers
 - (ii) by computing the total number of additional pictures based on the cardinality of the set of friends

Back to school...

Villanova Spring Break is over and it is time to fly back. The seat assignment on the aircraft has the five friends occupying a row with three seats and another two across the aisle. Of course, they are free to switch around among these seats.

- How many ways can the friends arrange themselves into the assigned seats?

- How many ways can the friends be divided into the two groups (each side of aisle).

- How does that relate to the total seating arrangements?

- If we generalize the problem to \(n \) friends divided into two groups of \(k \) and \(n-k \) on either side of the aisle. Consider the identity:

\[\binom{n}{k} \cdot k! \cdot (n-k)! = P(n,n) \]