Sets and Logic

CSC 1300 – Discrete Structures
Villanova University
Major Themes

• Sets
 – Ways of defining sets
 – Subsets, complements, the universal set
 – Venn diagrams
 – Set identities
 – Cartesian product
 – Partitions
Basic terminology

A **set** is an *unordered* collection of *distinct* objects called *elements* or *members* of the set.

The notation $x \in S$ — means “x is an element of S”

Example: $S = \{2, 4, 6, 8\}$
- $2 \in S$ — “2 is an element of S”
- $3 \notin S$ — “3 is not an element of S”

Example: $S = \{\{2, 4\}, \{6\}, 8\}$, $|S| = 3$
- $\{2, 4\} \in S$ — “$\{2,4\}$ is an element of S”
- $2 \notin S$ — “2 is not an element of S”

A **multiset** or a **bag** is an *unordered* collection of objects that are not necessarily distinct.
Sets and cardinality

The **cardinality** of a set S, denoted $|S|$, is the number of members of S.

Example: Let $A = \{a, b, c\}$, $B = \{1, 2\}$

$|A| = 3 \quad |B| = 2$

Example: $S = \{2, 4, 6, 8\}$ \hspace{1cm} $|S| =$

Example: $S = \{\{2, 4\}, \{6\}, 8\}$ \hspace{1cm} $|S| =$
Some important sets

• \(\mathbb{N} = \{ 1, 2, 3, \ldots \} \) - the set of **natural numbers**
• \(\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \) - the set of **integers**
• \(\mathbb{Z}_2 = \{0, 1\} \) - the **binary digits**
• \(\mathbb{R} \) - the set of **real numbers**
• \(\mathbb{Q} = \{ x \mid x = p/q \text{ where } p, q \in \mathbb{Z}, q \neq 0 \} \) - the set of **rational numbers**
• The **empty** (or **null**) **set**, denoted by \(\emptyset \), or \{ \}.
Describing sets

Two ways to describe a set:

1. By listing elements, e.g., \(S = \{2, 4, 6, 8\} \)

2. By a property, e.g.,

\[
T = \{x \mid x \text{ is an even positive integer}\}
\]

\[
E = \{x \in \mathbb{Z} \mid \frac{x}{2} \in \mathbb{Z}\}
\]
Subsets

S is a **subset** of T, denoted $S \subseteq T$, iff every element of S is also an element of T.

Examples:
- $\{a, b\} \subseteq \{a, b, c\}$
- $\{a, b, c\} \subseteq \{a, b, c\}$
- $\mathbb{Z} \subseteq \mathbb{Q}$
- $S \subseteq S$ (for every S)
- $\emptyset \subseteq S$ (for every S)

S is a **proper subset** of T, denoted $S \subset T$, iff S is a subset of T but $S \neq T$.

Examples:
- $\{a, b\} \subset \{a,b,c\}$
- $\{b\} \subset \{a, b, c\}$
- what about $\emptyset \subset S$???
The **power set** of a set S is the set of all subsets of S. The power set of S is denoted by $P(S)$.

- $P(\emptyset) = \{\emptyset\}$
- $P(\{a\}) = \{\emptyset, \{a\}\}$
- $P(\{a, b\}) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- $P(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$

What can we say about $|P(S)|$?
Set equality

Two sets \(S \) and \(T \) are \textit{equal}, denoted \(S = T \), iff they have the same elements, i.e., for every \(x \):

- if \(x \in S \) then \(x \in T \)
- \(\text{and} \) if \(x \in T \) then \(x \in S \)

In other words:

\[S = T \iff S \subseteq T \text{ and } T \subseteq S \]

Proof technique: double inclusion
Set equality

Examples:

• \{a,b\} = \{b,a\}

• \{1, 2, 3\} = \{x \mid x \text{ is an integer and } 0 < x < 4\}

• \{2, 4, 6\} = \{ x \mid x = 2*y, \text{ where } y \in \{1, 2, 3\} \}
Sets S and T are equal, denoted $S = T$, iff they have the same elements, i.e., for every x:

- If $x \in S$ then $x \in T$
- If $x \in T$ then $x \in S$

What does this even mean????
The Universal Set U

We usually think of sets as subsets of a **universal set** U.

- **Example:** $\{a,b\}$ and $\{b,d,e\} \Rightarrow U = \{a,b,c,d,e\}$

 (or maybe $U = \{a,b,c,d,e,f,g,...,z\}$ - usually determined by context)

The **complement** of S, denoted \overline{S} is the set of elements of U that are not in S.

Example: $\{b,d,e\} = \{a,c\}$

The **set difference**, denoted $S - T$ (or $S \setminus T$), is the set of elements of S that are NOT also in T.

Examples: $\{a,b,c,d,e\} - \{b,d,e\} = \{a,c\}$
(Note: $\overline{S} = U - S$)
$\{b,c\} - \{a,b\} = \{c\}$

Villanova CSC 1300 - Dr Papalaskari
Venn diagrams

- Disjoint sets S and T
- S and T are not disjoint
- $S \subseteq T$

Villanova CSC 1300 - Dr Papalaskari
Set Union and Intersection

\[S \cup T = \{ x \mid x \in S \text{ or } x \in T \} \]

\[S \cap T = \{ x \mid x \in S \text{ and } x \in T \} \]

Example: Let \(S = \{1,2,3,4\} \) and \(T = \{2,3,5\} \). Then

\[S \cup T = \{1,2,3,4,5\} \]

\[S \cap T = \{2,3\} \]

Villanova CSC 1300 - Dr Papalaskari
Set difference and complement

\[S - T = \{ x \mid x \in S \text{ and } x \notin T \} \]

\[\overline{S} = U - S \]

Example: Let \(U = \mathbb{N} \)

\[S = \{ x \mid x \text{ is an integer greater than 6} \} \]
\[T = \{ x \mid x \text{ is an even positive integer} \} \]

Then \(S - T = \{ x \mid x \text{ is an odd integer greater than 6} \} \)
\(\overline{S} = \{ x \mid x \text{ is an integer less than or equal to 6} \} \)

Villanova CSC 1300 - Dr Papalaskari
Generalized unions and intersections

\[S_1 \cap S_2 \cap \ldots \cap S_n \] denoted by \(\bigcap_{i=1}^{n} S_i \)

\[S_1 \cup S_2 \cup \ldots \cup S_n \] denoted by \(\bigcup_{i=1}^{n} S_i \)

Example: Let \(S_i = \{ i \} \).

\[\bigcap_{i=1}^{n} S_i = \quad \text{and} \quad \bigcup_{i=1}^{n} S_i = \]
Set identities

<table>
<thead>
<tr>
<th>Set Identities</th>
<th>Identity laws</th>
<th>Associative laws</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \cup \emptyset = S$</td>
<td>$S \cap U = S$</td>
<td>$S \cup (T \cup R) = (S \cup T) \cup R$</td>
</tr>
<tr>
<td>$S \cap U = S$</td>
<td>$S \cap \emptyset = \emptyset$</td>
<td>$S \cap (T \cap R) = (S \cap T) \cap R$</td>
</tr>
<tr>
<td>$S \cup U = U$</td>
<td>$S \cap \emptyset = \emptyset$</td>
<td>$S \cup (T \cap R) = (S \cup T) \cap (S \cup R)$</td>
</tr>
<tr>
<td>$S \cap \emptyset = \emptyset$</td>
<td>$S \cap S = S$</td>
<td>$S \cap (T \cup R) = (S \cap T) \cup (S \cap R)$</td>
</tr>
<tr>
<td>$S \cup S = S$</td>
<td>$S \cap S = S$</td>
<td>$S \cap (T \cap R) = (S \cap T) \cap (S \cap R)$</td>
</tr>
<tr>
<td>$S \cap T = T \cup S$</td>
<td>$S \cap T = T \cup S$</td>
<td>$S \cup (T \cap R) = (S \cup T) \cap (S \cup R)$</td>
</tr>
<tr>
<td>$S \cup T = T \cup S$</td>
<td>$S \cup T = T \cup S$</td>
<td>$</td>
</tr>
<tr>
<td>$S \cap T = T \cap S$</td>
<td>$S \cap T = T \cap S$</td>
<td>Inclusion-exclusion</td>
</tr>
</tbody>
</table>

Complementation law

$(\overline{S}) = S$
Proving set identities - example

Prove that \(S \cap T = S \cup T \) (de Morgan’s Law for sets).

Proof: We proceed by showing that each set is a subset of the other, i.e. \(S \cap T \subseteq S \cup T \) and \(S \cup T \subseteq S \cap T \).

1. Suppose \(x \in S \cap T \). i.e. \(x \notin S \cap T \). Then \(x \notin S \) or \(x \notin T \).

 Hence, \(x \in S \) or \(x \in T \). This means that \(x \in S \cup T \).

 Thus, \(S \cap T \subseteq S \cup T \).

2. Now suppose \(x \in S \cup T \). Then \(x \notin S \) or \(x \notin T \).

 Hence \(x \notin S \) or \(x \notin T \), which means that \(x \notin S \cap T \).

 Therefore, \(x \in S \cap T \). Thus, \(S \cup T \subseteq S \cap T \).
Cartesian product

Let $A = \{a, b, c\}, \quad B = \{1, 2\}$

The **cartesian product** is the set of ordered pairs (x, y) where $x \in A$ and $y \in B$:

$$A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$$

Product Principle: $|A \times B| = |A| \cdot |B|$
Ordered pairs and n-tuples

ordered pairs (a_1,a_2)

and

ordered n-tuples $(a_1,a_2,...,a_n)$

• represent sequences where the order of elements **does** matter and repetitions are allowed.

The **Cartesian product** of the sets $S_1, S_2, ..., S_n$, denoted by $S_1 \times S_2 \times ... \times S_n$, is the set of all ordered n-tuples $(s_1,s_2,...,s_n)$ where $s_1 \in S_1$, $s_2 \in S_2$, ..., $s_n \in S_n$. In other words,

$$S_1 \times S_2 \times ... \times S_n = \{(s_1,s_2,...,s_n) \mid s_1 \in S_1 \text{ and } s_2 \in S_2 \text{ and } ... \text{ and } s_n \in S_n\}$$
Partitions

A *partition* of a set X is a collection of disjoint nonempty subsets of X that have X as their union.

The collection X_1, X_2, X_3, X_4 is a partition of X.

Villanova CSC 1300 - Dr Papalaskari
Partitions - Example

Let $X = |A \cup B \cup C \cup D|$ where
$A = \{0, 4, 8\}, \ B = \{1, 5\}, \ C = \{2, 6\}, \ D = \{3, 7\}$

The sets A, B, C, D form a partition of $X
Cardinality of disjoint set unions

Let \(A = \{a, b, c\} \), \(B = \{1, 2\} \)

cardinality of a set = number of members

\[
|A| = 3
\]

\[
|B| = 2
\]

\(A \cup B = \{a, b, c, 1, 2\} \quad A \cap B = \emptyset \)

Sum Principle: If \(A \) and \(B \) are disjoint

\[
|A \cup B| = |A| + |B|
\]
Cardinality of subset set difference

Let \(A = \{a, b, c, d, e\} \), \(B = \{b, d\} \)

\[|A| = 5 \]
\[|B| = 2 \]

\(A - B = \{a, c, e\} \)

Difference Principle: If \(B \subseteq A \),

\[|A - B| = |A| - |B| \]