Binomial Coefficients and Pascal’s triangle

CSC 1300 – Discrete Structures

Villanova University
Permutations

• A permutation is an ordering of objects
 – For example, 3 blocks can be ordered 6 ways

• There are n! permutations of n elements
 – Easily proved using the Product rule
k-Combination

What if all that matters is which blocks you select, not the order?...

• A combination is an unordered arrangement of elements in a set
 – Example: a 3-combination from a set of 12 colored blocks
Combinations

- **Choice notation:** \(n \text{ choose } k \)
 \[
 \binom{n}{k} = k\text{-combinations of a set with } n \text{ elements}
 \]

- also denoted: \(C(n,k) \)

- The number of subsets of size \(k \) from a set with \(n \) elements

- Also called the *binomial coefficient*

- Formula: \(C(n,k) = \frac{n!}{(n-k)!k!} \)
Combinations

• **Example:** the number of ways to form a committee of 4 members from a department of 13 faculty

• denoted \(C(13, 4) \) or \(\binom{13}{4} \)
k-Permutations

\[P(n,k) = k\text{-permutations of a set with } n \text{ elements} \]

- The number of ways to permute \(k \) out of \(n \) items
- Similar to combinations, but order matters
- Formula: \(P(n,k) = n! / (n-k)! \)
Permutations

• **Example:** the number of ways to arrange 4 of the 13 faculty to appear in a photo

• denoted $P(13,4)$
Pascal’s Triangle

• Pascal’s Triangle represents the identity:
 \[C(n+1,k) = C(n,k) + C(n,k-1) \]
 for any \(1 \leq k \leq n \)
More Properties of Combinations

\[C(n, k) = C(n, n-k) \quad \text{for any } 0 \leq k \leq n \]

\[C(n, 0) = \quad \text{for any } n \geq 0 \]

\[C(n, n) = \]

\[C(n, 0) + C(n, 1) + \ldots + C(n, n) = \quad \text{for any } n \geq 0 \]
Binomial Refresher

• A binomial expression is simply the sum of two terms
 – For example:
 • (x+y)
 • (x+y)^2

• When a binomial expression is expanded, the binomial coefficients can be “seen”
 – For example:
 (x+y)^2 = x^2 + 2xy + y^2
 = 1x^2 + 2xy + 1y^2
Binomial Coefficients & Combinations

• Explore the following:

 \[(x+y)^3 = (x+y)(x+y)(x+y)\]

 \[xxx + xxy + xyx + yyy + yxx + yxy + yyy + yyy\]

 \[x^3 + 3x^2y + 3xy^2 + y^3\]

 \[C(3,3) \quad C(3,2) \quad C(3,1) \quad C(3,0)\]

• Binomial Theorem

 \[(x+y)^n = \sum_{k=0}^{n} C(n,k)x^{n-k}y^k\]
Binomial Theorem

• **Problem**
 – What is the expansion of \((x+y)^4\)?

• **Solution**
 – \((x+y)^4 = C(4,0)x^4y^0 + C(4,1)x^3y^1 + C(4,2)x^2y^2 + C(4,3)x^1y^3 + C(4,4)x^0y^4\)

 \[= 1x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4\]
Binomial Coefficients & Combinations

• **Problem**

 – Find the coefficient x^4y^7 in the expansion of $(x+y)^{11}$

• **Solution**

 n = 11 and k = 7

 $C(11,7) x^{11-7} y^7$

 $(11*10*9*8*7*6*5)/(7*6*5*4*3*2) x^{11-7} y^7$

 $= 330 x^4 y^7$
Some Corollaries of the Binomial Theorem

Corollary 1 \((a = b = 1)\):

Corollary 2 \((a = 1, b = -1)\):

Corollary 3 \((a = 1, b = 2)\):
<table>
<thead>
<tr>
<th>➔ 00000</th>
<th>➔ 00001</th>
<th>➔ 00010</th>
<th>➔ 00011</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔ 00100</td>
<td>➔ 00101</td>
<td>➔ 00110</td>
<td>➔ 00111</td>
</tr>
<tr>
<td>➔ 01000</td>
<td>➔ 01001</td>
<td>➔ 01010</td>
<td>➔ 01011</td>
</tr>
<tr>
<td>➔ 01100</td>
<td>➔ 01101</td>
<td>➔ 01110</td>
<td>➔ 01111</td>
</tr>
<tr>
<td>➔ 10000</td>
<td>➔ 10001</td>
<td>➔ 10010</td>
<td>➔ 10011</td>
</tr>
<tr>
<td>➔ 10100</td>
<td>➔ 10101</td>
<td>➔ 10110</td>
<td>➔ 10111</td>
</tr>
<tr>
<td>➔ 11000</td>
<td>➔ 11001</td>
<td>➔ 11010</td>
<td>➔ 11011</td>
</tr>
<tr>
<td>➔ 11100</td>
<td>➔ 11101</td>
<td>➔ 11110</td>
<td>➔ 11111</td>
</tr>
</tbody>
</table>

bit strings to cut out for playing around with patterns

Villanova CSC 1300 - Dr Papalaskari
Below are rows zero to sixteen of Pascal's triangle in table form (even numbers highlighted): [source: wikipedia:

<table>
<thead>
<tr>
<th>row #</th>
<th>Pascal's triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>2</td>
<td>1 2 1</td>
</tr>
<tr>
<td>3</td>
<td>1 3 3 1</td>
</tr>
<tr>
<td>4</td>
<td>1 4 6 4 1</td>
</tr>
<tr>
<td>5</td>
<td>1 5 10 10 5 1</td>
</tr>
<tr>
<td>6</td>
<td>1 6 15 20 15 6 1</td>
</tr>
<tr>
<td>7</td>
<td>1 7 21 35 35 21 7 1</td>
</tr>
<tr>
<td>8</td>
<td>1 8 28 56 70 56 28 8 1</td>
</tr>
<tr>
<td>9</td>
<td>1 9 36 84 126 126 84 36 9 1</td>
</tr>
<tr>
<td>10</td>
<td>1 10 45 120 210 252 210 120 45 10 1</td>
</tr>
<tr>
<td>11</td>
<td>1 11 55 165 330 462 462 330 165 55 11 1</td>
</tr>
<tr>
<td>12</td>
<td>1 12 66 220 495 792 924 792 495 220 66 12 1</td>
</tr>
<tr>
<td>13</td>
<td>1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1</td>
</tr>
<tr>
<td>14</td>
<td>1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1</td>
</tr>
<tr>
<td>15</td>
<td>1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1</td>
</tr>
<tr>
<td>16</td>
<td>1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1</td>
</tr>
</tbody>
</table>