Modular arithmetic and Equivalence Relations

CSC 1300 – Discrete Structures
Villanova University
If a and b are two integers and m is a positive integer, then a is congruent to b modulo m, denoted $a \equiv b \pmod{m}$, if a and b have the same remainder when divided by m.

Examples:
$15 \equiv 7 \pmod{2}$
$14 \equiv 2 \pmod{12}$
$15 \equiv 95 \pmod{10}$
$-6 \equiv 24 \pmod{2}$
$8 \equiv -4 \pmod{12}$
Equivalent formulations of congruence modulo m

- **a is congruent to b modulo m**
- $a ≡ b \pmod{m}$
- a and b have the same remainder when divided by m
- $a − b$ is divisible by m
- m divides $a − b$ \ (denoted $m | (a − b)$)
- $a − b = km$ for some $k ∈ \mathbb{Z}$
Equivalence Relations

\[a \equiv b \pmod{m} \] is an **equivalence relation**.

A relation on a set \(A \) is called an *equivalence relation* if it is
(i) reflexive,
(ii) symmetric,
(iii) transitive.

Formalizes the notion of “equivalence” or “sameness”.

Examples of equivalence relations:
- “to be equal” (for numbers or sets)
- “to have the same age”
- “to have the same remainder after division by 2” (i.e., parity)
- “to have the same first 3 bits” (for bit strings)
Let R be an equivalence relation on a set X, and let a be an element of X. The set of all elements of X that are related to a by R is called the *equivalence class* for a and is denoted by $[a]$. Any element $b \in [a]$, b is called a *representative* of $[a]$.

Example: Consider the relation “… is congruent to … modulo 2” on the set \mathbb{Z}. What is $[4]$?

Example: Let X be the set of all bit strings of length at least 3, and R be the relation “agree in the first three bits”. Find

- $[001]$
- $[1101101]$
- $[0011]$
Theorem. Let R be an equivalence relation on a set X. Then the equivalence classes of R form a partition of X.

A *partition* of a set X is a collection of disjoint nonempty subsets of X that have X as their union.

The collection X_1, X_2, X_3, X_4 is a partition of X.

Villanova CSC 1300 - Dr Papalaskari
Partitions

What is the partition of \mathbb{Z} formed by the relation “... is congruent to ... modulo 4”?
Useful facts about congruences

The following hold for \(n \geq 1 \):

• \(a \equiv a \pmod{n} \)

• \(a \equiv b \pmod{n} \) \(\Rightarrow \) \(b \equiv a \pmod{n} \)

• \((a \equiv b \pmod{n} \text{ } \& \text{ } b \equiv c \pmod{n})\) \(\Rightarrow \) \(a \equiv c \pmod{n} \)

• \(a \equiv b \pmod{n} \) \(\Rightarrow \) \(a + c \equiv b + c \pmod{n} \)

• \(a \equiv b \pmod{n} \) \(\Rightarrow \) \(ac \equiv bc \pmod{n} \)

• \((a \equiv b \pmod{n} \text{ } \& \text{ } c \equiv d \pmod{n})\) \(\Rightarrow \) \(a + b \equiv c + d \pmod{n} \)

• \((a \equiv b \pmod{n} \text{ } \& \text{ } c \equiv d \pmod{n})\) \(\Rightarrow \) \(ab \equiv cd \pmod{n} \)