Functions and Graphs

CSC 1300 – Discrete Structures

Villanova University

Major Themes

- Functions
 - \(f : A \rightarrow B \)
 - domain/co-domain
 - range
 - one-to-one
 - onto
 - bijection

- Graphs
 - vertices
 - edges
 - path
 - cycle
 - Handshaking theorem
 - Isomorphism

Functions: Basic terminology

A function \(f \) from \(A \) to \(B \) assigns exactly one element of \(B \) to each element of \(A \).

- We write \(f(x) = y \) if the function \(f \) assigns \(y \) to \(x \).
- The range of \(f \) is the set of all images of elements of \(A \).

NB: Range can be smaller than co-domain!

Functions: How many?

Suppose \(|A| = m, |B| = q\).
- How many functions are there from \(A \) to \(B \)? \(q^m \)
- one-to-one functions? \(q(q-1)(q-2)...(q-(m-1)) \)
- onto? this question is much harder, see #24 in Chapter 6
One-to-One Functions

- A function \(f : X \rightarrow Y \) is one-to-one (or injective) iff for each \(y \in Y \) there is at most one \(x \in X \) with \(f(x) = y \)
- Examples:
 \[\{(1,5), (2,3), (4,5)\} \]
 \(f(x) = x^2 \) for \(x \in \mathbb{Z} \)

Onto Functions

- A function \(f : X \rightarrow Y \) is onto (or surjective) if for each \(y \in Y \) there exists an \(x \in X \) with \(f(x) = y \)
 - (co-domain = range)

\[\{(1,2), (2,4), (3,6), (4,6)\} \]

\(f(x) = x^2 \) for \(x \in \{(1,0.2) \) and \(y \in \{1,0.2\} \)

\(f(x) = x^2 \) for \(x \in \{(1,0.2) \) and \(y \in \{1,0.4\} \)

Bijections

- A function \(f \) from \(X \) to \(Y \) is a bijection (or a one-to-one correspondence) if it is both injective and surjective.

Example. Let \(f(x) = x+1 \). Is \(f \) a bijection?
- if the domain and codomain are \(\mathbb{N} \) - no
- if the domain and codomain are \(\mathbb{Z} \) - yes
- if the domain and codomain are \(\mathbb{R} \) - yes

Graphs

- Graphs are discrete structures consisting of vertices and edges that connect these vertices.
- Graphs can be used to model:
 - computer systems/networks
 - mathematical relations
 - logic circuit layout
 - jobs/processes

Questions
- isomorphism
- shortest paths
- cycles/paths
- planarity
- coloring
Graphs: Basic Terminology

• A graph is defined as \(G = (V, E) \) with the set of vertices \(V \) and a set of edges \(E \).
• Two vertices \(u \) and \(v \) in an undirected graph \(G \) are adjacent (or neighbors) if \(\{u, v\} \) is an edge of \(G \).
 – The edge \(e \) is said to connect (or to be incident with) \(u \) and \(v \).

\[
G = \{(v_1, v_2, v_3), \{e_1, e_2\}\}
\]

\(e_2 \) connects \(v_2 \) and \(v_3 \)

Directed Graphs

• By definition, the edges of a directed graph are ordered pairs.
• In a directed graph, if we have edge \(e = (u, v) \), then
 – \(u \) is said to be adjacent to \(v \), the terminal vertex
 – \(v \) is said to be adjacent from \(u \), the initial vertex

Types of Graphs

<table>
<thead>
<tr>
<th>Type</th>
<th>Edges</th>
<th>Multiple Edges?</th>
<th>Loops?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple graph</td>
<td>Undirected</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Multigraph</td>
<td>Undirected</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pseudograph</td>
<td>Undirected</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Directed graph</td>
<td>Directed</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Directed multigraph</td>
<td>Directed</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Degree of a vertex

• The degree of a vertex \(v \) is the number of edges incident on \(v \).
 – Denoted \(\text{deg}(v) \)
 – A loop on \(v \) contributes 2 to the \(\text{deg}(v) \)

• Example:

\[
\text{deg}(a) = 3 \\
\text{deg}(b) = 1 \\
\text{deg}(c) = 5 \\
\text{deg}(d) = 0 \\
\text{deg}(e) = 1
\]
Handshaking Lemma

In an undirected graph, the sum of the degrees of the vertices is twice the number of edges. Therefore, the sum of the degrees of all the vertices is even.

\[\sum_{v \in V} \deg(v) = 2|E|. \]

- **Corollary**: An undirected graph has an even number of vertices of odd degree.

Path

- A **path** begins at vertex \(v_0 \), follows an edge \(e_1 \) to \(v_1 \), follows another edge to \(v_2 \) ...
 - A path is represented without edges (especially when there are no parallel edges)
 - \((v_0, v_1, v_2, \ldots, v_n) \)
 - Said to be of length \(n \)
 - A path on a vertex itself is of length 0
 - A **simple path** from \(v_0 \) to \(v_n \) is a path with no repeated edges.

Cycle

- A **cycle** (or **circuit**) is a path of nonzero length from \(v \) to \(v \).

- A **simple circuit** is a circuit from \(v \) to \(v \) with no repeated edges

Connected Graph

- A graph \(G \) is connected if given any vertices \(v_1 \) and \(v_2 \) in \(G \), there is a path from \(v_1 \) to \(v_2 \).

- **Tree**: a connected graph with no cycles
Bipartite Graph

- A simple graph is called **bipartite** if its vertex set V can be partitioned into 2 disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 to a vertex in V_2.

Special Graphs

- **Complete Graph** - K_n
 - Simple graph that contains exactly 1 edge between each pair of n distinct vertices.
- **Complete Bipartite Graph** – $K_{n,m}$
 - Simple graph that contains exactly 1 edge between each pair of n distinct vertices to m distinct vertices.
- **Cycles** – C_n
 - For $n \geq 3$, consists of n vertices and edges $(v_1,v_2), (v_2,v_3) \ldots (v_{n-1},v_n)$
- **Wheels** – W_n
 - Cycle C_n with an additional vertex added and an edge from the new vertex to each of the n vertices

Representation of Graphs

- Adjacency list
 - $V = \{a, b, c, d, e\}$,
 - $\{\{a\}, \{b, b\}, \{c, d\}, \{a, e\}, \{e, d\}, \{a, e\}\}$
- Adjacency matrix
 - $\begin{pmatrix}
 0 & 1 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 1 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0
 \end{pmatrix}$

Isomorphism...

- It means two graphs are essentially the same (maybe drawn differently and re-labeled)
 - Same number of vertices
 - Same number of edges
 - Same degree sequence

3.8 Problem 3: Are these essentially the same graph?

- 3.8 Problem 3: are these essentially the same graph?
Isomorphism

• Graphs are **isomorphic** if they have the same structure
 – 1-to-1 mapping of vertices that preserves edges

![Graph Isomorphism Example](image)

Isomorphic graphs will have the same adjacency matrix under some reordering of the vertices

![Adjacency Matrix Example](image)

Special Graphs

• Connected, simple graph
 – Cycle C_n
 – Wheels W_n
 – Complete graph K_n
 – The Complement Graph \bar{G}
 – A Complete Bipartite $K_{n,m}$
 – Tree: a connected graph with no cycles

![Special Graphs Examples](image)

More Graph Terminology

Let $G = (V, E)$

- The **complement** $\bar{G} = (V, E')$
 - where $E' = \{(u,v) \mid u \in V$ and $v \in V$ and $\{u,v\} \notin E\}$

- A graph $G' = (V', E')$ is a **subgraph** of G iff $V' \subseteq V$ and $E' \subseteq E$

- A **connected component** of a graph is a subgraph that is connected.

Tree: a connected graph with no cycles

Forest: graph with no cycles

![More Graph Terminology Diagram](image)