Introduction to Algorithms and Data Structures

CSC 1051 – Algorithms and Data Structures I
Dr. Mary-Angela Papalaskari
Department of Computing Sciences
Villanova University

Course website:
www.csc.villanova.edu/~map/1051/

What is this course about?

• Computer Science
• Problem solving
• Algorithmic thinking
• Data representation
• Software engineering

Course website
www.csc.villanova.edu/~map/1051/

Links to:
• Schedule – topics, slides, projects, labs, code, etc.
• Syllabus – course information
• Piazza – class discussions, announcements
• Blackboard – submit projects, check grades

Our textbook
Java Software Solutions
Foundations of Program Design
Seventh Edition

John Lewis
William Loftus
An old quote
A priest asked: “What is Fate, Master?”
And he answered:
“It is that which gives a beast of burden its reason for
existence. It is that which men in former times had to bear
upon their backs. It is that which has caused nations to build
byways from City to City upon which carts and coaches
pass, and alongside which inns have come to be built to
stave off Hunger, Thirst and Weariness.”
“And that is Fate?” said the priest.
“Fate... I thought you said Freight,” responded the Master.
“That’s all right,” said the priest. “I wanted to know what
Freight was too.”
- Kehlog Albran

Source unknown. This quote appeared as one of the “fortunes” displayed by the fortune cookie program on old unix
systems. (Fortunes was a program that ran automatically every time you logged out of a unix session and displayed a
random, pithy saying.)

Reverse History of computing
Examine what we already know, travel backwards…

1. What we see now all around us – a connected
world of computing

2. Focus on a single “traditional” computer

3. Dig deeper – data and processing

The Internet
History: Started as a United States government project, sponsored by the Advanced Research
Projects Agency (ARPA) in late 1960’s
See also: http://www.internethalloffame.org/internet-history/timeline

• 1970’s and 1980’s: ARPANET
 – wide area network
 – protocols for communication

• 1990’s: World Wide Web
 – html and web browsers
The World Wide Web

The Internet Protocol (IP) determines how data are routed across network boundaries.

Each computer on the Internet has a unique IP address, such as: 204.192.116.2

Data are accessed using a Uniform Resource Locator (URL):

eg: http://www.cnn.com
ftp://java.sun.com/appletsanimation.zip

- A URL specifies a protocol (http), a domain, and possibly specific documents
- Web documents are often defined using the HyperText Markup Language (HTML)

The World Wide Web

- The World Wide Web allows many different types of information to be accessed using a common interface
- Resources presented include:
 - text, graphics, video, sound, audio, executable programs
- A browser is a program which accesses network resources and presents them
 - Popular browsers: Chrome, Internet Explorer, Safari, Firefox
 - My first browser: Mosaic <3

Reverse History of computing

Examine what we already know, travel backwards...

1. What we see now all around us – a connected world of computing

2. Focus on a single “traditional” computer

3. Dig deeper – data and processing
A Computer Specification

- Consider the following specification for a personal computer:
 - 3.07 GHz Intel Core i7 processor
 - 4 GB RAM
 - 750 GB Hard Disk
 - 16x Blu-ray / HD DVD-ROM & 16x DVD+R DVD Burner
 - 17” Flat Screen Video Display with 1280 x 1024 resolution
 - Network Card

Memory

Main memory is divided into many memory locations (or cells).

Each memory cell has a numeric address, which uniquely identifies it.

“Random Access Memory (RAM)”

You don’t have to scan the memory sequentially – go to data directly using the address.
Introduction

CPU and Main Memory

Central Processing Unit

Main Memory

Chip that executes program commands

Primary storage area for programs and data that are in active use

Synonymous with RAM

CSC 1051 M.A. Papalaskari, Villanova University

Historic note:
Von Neuman architecture
John Von Neuman, USA 1945

System clock controls speed, measured in gigahertz (GHz)

Retrieve an instruction from main memory

fetch

decode

execute

determine what the instruction is

Carry out the instruction

CSC 1051 M.A. Papalaskari, Villanova University

The Central Processing Unit

- A CPU is on a chip called a microprocessor
- It continuously follows the fetch-decode-execute cycle:
Introduction

The Central Processing Unit

- Arithmetic / Logic Unit: Performs calculations and makes decisions
- Control Unit: Coordinates processing (system clock, decoding, etc)
- Registers: Small, very fast memory

Historic Notes: Automatic control of computation

- The concept of a machine that can follow a series of steps - a "program"
- Some early steps:
 - Jacquard loom (France 1801)
 - Babbage's Difference engine and Analytical engine (England 1822)
 - Holerith's census machine (USA 1890)
- Colossus Mark I – first electronic computer to be programmable (Alan Turing, England 1944)
- Stored program and the fetch/decode/execute cycle (John von Neumann, USA 1945)
- ENIAC - first fully electronic digital computer (Eckert and Mauchley, University of Pennsylvania, 1946)

Jacquard Loom

This portrait of Jacquard was woven in silk on a Jacquard loom and required 24,000 punched cards to create (1839). It was only produced to order. Charles Babbage owned one of these portraits; it inspired him in using punched cards in his analytical engine. Collection of the Science Museum in London, England. (Source: Wikipedia)

Charles Babbage & Ada Lovelace

Designed the Analytical Engine

First “Programmer” for (not yet built) Analytical Engine

Dr. Papalaskari
1945: The word “computer” changes its meaning

The word "computer" changes its meaning in 1945. Captain Grace Hopper and other computers

Reverse History of computing

Examine what we already know, travel backwards...

1. What we see now all around us – a connected world of computing

2. Focus on a single “traditional” computer

3. Dig deeper – data and processing

Data Representation

- Computers store all information digitally, using binary codes:

 - numbers
 - text
 - images
 - audio
 - video
 - program instructions

Analog vs. Digital Data

- Analog
 - continuous, in direct proportion to the data represented
 - music on a record album - a needle rides on ridges in the grooves that are directly proportional to the voltages sent to the speaker

- Digital
 - information is broken down into pieces, and each piece is represented separately
 - sampling – record discrete values of the analog representation
Binary Numbers

- Number system consisting of 1’s & 0’s
- Simplest way to represent digital information:
 - Electronic circuits: high/low voltage
 - Magnetic devices (e.g., hard drive): positive/negative
 - Optical devices (e.g., DVD): light reflected/not reflected due to microscopic grooves

A binary digit is called a **bit** - **binary digit**

A **byte** is a group of eight bits

Computing devices store use binary codes to represent data of **all kinds**

Example: Representing Text

- Characters, including spaces, digits, and punctuation are represented by numeric codes

Hi, Heather.

72 105 44 32 101 97 116 104 101 114 46

01110100 ASCII

00000000 01110100 UNICODE

The ASCII (American Standard Code for Information Interchange) character set uses eight bits per character, allowing for 256 unique characters.

The Unicode character set extends ASCII to sixteen bits per character, allowing for 65,536 unique characters.

Example: Representing Pixels

- Hi
 - red=116
 - a number?
 - a letter?
 - the red component of a pixel?
 - a program instruction?

- Heather.
 - green=86

Color(01110100, 01010110, 10001110)

Dr. Papalaskari
Example: Representing Program Instructions

Intel opcode for the instruction JZ (jump if zero):

01110100

Historic note:
Trends that gave rise to the modern computer

- Mechanization of arithmetic – the concepts of numbers, symbols, algorithms, and computation
- Automatic control of computation – a “program” to control operations (fetch/decode/execute cycle and the stored program concept)

= modern computer

Historic Note: Mechanization of arithmetic

- Development of number systems
 - Abacus (2400 BC)
 - Number systems (Babylonian, Greek, Roman, Arabic 1000 BC - 800 AD)
- The notion of an algorithm
 - Euclid (300 BC)
 - al-Khwārizmī (780 AD)
- Creation of special purpose calculators
 - Stonehenge (1900-1600 BC)
 - Napier’s bones (1600, a precursor of the slide rule)
 - Pascal’s adder (1642)
 - Leibniz’s calculator (1670s)
 - modern calculators
Computer Science
A new paradigm in humanity’s search for understanding of:
- Representation & encoding
- Computation
- Problem solving
- Mechanization

Mechanization of arithmetic – the concepts of numbers, symbols, algorithms, and computation

Automatic control of computation – a “program” to control operations (fetch/decode/execute cycle and the stored program concept)

= modern computer

History Epilogue: Just like Physics and other sciences branched off from philosophy during the Renaissance, so CS emerged in the 20th century from the work of philosophers and mathematicians – with the help of dedicated, visionary practitioners, experimental scientists and engineers.

High-level programming languages

- Programmer writes Source code
- Translation produces the binary equivalent – Object code
- Translation is performed by an assembler, compiler, or interpreter (stay tuned)

Java Translation

Part 2 – introduction to Java

• Programmer writes Source code
• Translation produces the binary equivalent – Object code
• Translation is performed by an assembler, compiler, or interpreter (stay tuned)
Development Environments

- There are many programs that support the development of Java software, including:
 - Sun Java Development Kit (JDK)
 - Sun NetBeans
 - IBM Eclipse
 - IntelliJ IDEA
 - Oracle JDeveloper
 - BlueJ
 - jGRASP

- Though the details of these environments differ, the basic compilation and execution process is essentially the same.

Java Program Structure

- In the Java programming language:
 - A program is made up of one or more classes
 - A class contains one or more methods
 - A method contains program statements

- These terms will be explored in detail throughout the course.

- A Java application always contains a method called main.

- See Lincoln.java

Java Program Example

```java
//********************************************************************
// Lincoln.java       Author: Lewis/Loftus
// // Demonstrates the basic structure of a Java application.
//********************************************************************
public class Lincoln
{
    // Prints a presidential quote.
    public static void main(String[] args)
    {
        System.out.println("A quote by Abraham Lincoln:");
        System.out.println("Whatever you are, be a good one.");
    }
}
```
Java Program Structure

```java
// comments about the class
public class MyProgram {
    // comments about the method
    public static void main (String[] args) {
        // method header
        method body
    }
}
```

Comments

- Comments in a program are called *inline documentation*
- They should be included to explain the purpose of the program and describe processing steps
- They do not affect how a program works
- Java comments can take three forms:
  ```java
  // Basic this comment runs to the end of the line
  /* Basic this comment runs to the terminating symbol, even across line breaks */
  /** this is a javadoc comment */
  ```

Identifiers

- *Identifiers* are the words a programmer uses in a program
- An identifier can be made up of letters, digits, the underscore character (_), and the dollar sign
- Identifiers cannot begin with a digit
- Java is *case sensitive* - `Total`, `total`, and `TOTAL` are different identifiers
- By convention, programmers use different case styles for different types of identifiers, such as
 - *title case* for class names - `Lincoln`
 - *upper case* for constants - `MAXIMUM`
- Sometimes we choose identifiers ourselves when writing a program (such as `Lincoln`)
- Sometimes we are using another programmer’s code, so we use the identifiers that he or she chose (such as `println`)
- Often we use special identifiers called reserved words that already have a predefined meaning in the language
- A reserved word cannot be used in any other way
Reserved Words

• The Java reserved words:

 abstract else interface switch
 assert enum long synchronized
 boolean extends native this
 break false null throws
 byte final null transient
 case finally package transient
 catch float private true
 char for protected try
 class goto public void
 const if return volatile
 continue implements short while
 default import static
 do instanceof strictfp
 double int super

White Space (Spaces, blank lines, and tabs)

• Extra white space is ignored

• Programs should be formatted to enhance readability, using consistent indentation

 See Lincoln2.java, Lincoln3.java

Errors

• A program can have three types of errors

 • The compiler will find syntax errors and other basic problems (compile-time errors)
 – If compile-time errors exist, an executable version of the program is not created

 • A problem can occur during program execution, such as trying to divide by zero, which causes a program to terminate abnormally (run-time errors)

 • A program may run, but produce incorrect results, perhaps using an incorrect formula (logical errors)
Introduction

The original "bug" found in the relays of Harvard's Mark II computer by Admiral Grace Murray Hopper's team.

Summary

- History of computing
- Computer hardware and software overview
- An introduction to Java:
 - a first program
 - identifiers
 - comments
 - bugs