Lecture 4: Interactive programs

CSC 1051 – Data Structures and Algorithms I

Dr. Mary-Angela Papalaskari
Department of Computing Sciences
Villanova University

Course website:
www.csc.villanova.edu/~map/1051/
Last time:

- Variables
- Assignment operator
- Primitive data types
- Arithmetic operators

Problem solving: Create a program that will help us calculate a grade point average (GPA) given the number of quality points (QP) and the number of credits.
Today:

• More on:
 – data types
 – assignment operators

• Interactive programs
 – Input using the Scanner class
Topic Thread

- 2.1 Character Strings
- 2.2 Variables, Assignment
- 2.3 Data Types
- 2.4 Expressions (simple)
- 2.5 Data Conversion
- 2.6 Interactive Programs
- 5.1 Boolean Expressions
- 5.2 The *if* Statement
- 5.4 The *while* Statement
The GPA Problem

Solution 1

• Not very exciting, is it?
• Let’s add some storage (remember our model of computing)
/**
// GPA03.java
//
// Prints out a GPA
//**

public class GPA03
{
 public static void main (String[] args)
 {
 int qp = 52;
 int credits = 16;
 double gpa = qp / credits;

 System.out.println ("Quality Points: " + qp);
 System.out.println ("Credits: " + credits);
 System.out.println ("");
 System.out.println ("\tGPA: " + gpa);
 }
}
Quick Check

What are the results of the following expressions?

\[
\begin{align*}
12 & \div 2 \\
12.0 & \div 2.0 \\
10 & \div 4 \\
10 & \div 4.0 \\
4 & \div 10 \\
4.0 & \div 10 \\
12 & \% 3 \\
10 & \% 3 \\
3 & \% 10
\end{align*}
\]
Quick Check

What are the results of the following expressions?

12 / 2 = 6
12.0 / 2.0 = 6.0
10 / 4 = 2
10 / 4.0 = 2.5
4 / 10 = 0
4.0 / 10 = 0.4
12 % 3 = 0
10 % 3 = 1
3 % 10 = 3
public class GPA03
{
 public static void main (String[] args)
 {
 int qp = 52;
 int credits = 16;
 double gpa = qp / credits;
 System.out.println ("Quality Points: " + qp);
 System.out.println ("Credits: " + credits);
 System.out.println ();
 System.out.println ("\tGPA: " + gpa);
 }
}

Solution 3

- A little more interesting but ...
- What happened to the output?
Assignment Conversion

- *Assignment conversion* occurs when a value of one type is assigned to a variable of another type.

Example:

```java
int dollars = 20;
double money = dollars;
```

- Only *widening conversions* can happen via assignment.
Converting from one type to another

- **Widening conversions**
 - small data type → larger one (e.g. `int` to `double`)

- **Narrowing conversions**
 - large data type → smaller one (e.g. `double` to `int`)
 - can lose information!
Converting from one type to another

• **Widening conversions**
 – small data type → larger one (eg int to an double)

• **Narrowing conversions**
 – large data type → smaller one (eg double to a int)
 – can lose information!

• In Java, data conversions can occur in three ways:
 – assignment conversion
 – promotion
 – casting
Converting from one type to another

- **Widening conversions**
 - small data type → larger one (eg `int` to an `double`)

- **Narrowing conversions**
 - large data type → smaller one (eg `double` to a `int`)
 - can lose information!

- In Java, data conversions can occur in three ways:
 - assignment conversion
 - promotion
 - casting

```java
double money;
money = 3;
money = 5 / 2.0;
money = (double) 8;
```
Assignment Conversion

- **Assignment conversion** occurs when a value of one type is assigned to a variable of another type.

- Example:

```java
int dollars = 20;
double money = dollars;
```

- Only widening conversions can happen via assignment.
Promotion

• *Promotion* happens automatically when operators in expressions convert their operands

• Example:

```java
int count = 12;
double sum = 490.27;
result = sum / count;
```

• The value of `count` is converted to a floating point value to perform the division calculation
Casting

- *Casting* forces a change of type, even if information is lost
 - Both widening and narrowing conversions

- To cast, the type is put in parentheses in front of the value being converted:

  ```
  int total = 50;
  float result = (float) total / 6;
  ```

- Without the cast, the fractional part of the answer would be lost
Primitive Data

- There are eight primitive data types
- Four of them represent integers:
 - byte, short, int, long
- Two of them represent floating point numbers:
 - float, double
- One of them represents characters:
 - char
- And one of them represents boolean values:
 - boolean
Numeric Primitive Data

- The difference between the numeric primitive types is their size and the values they can store:

<table>
<thead>
<tr>
<th>Type</th>
<th>Storage</th>
<th>Min Value</th>
<th>Max Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>byte</td>
<td>8 bits</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>short</td>
<td>16 bits</td>
<td>-32,768</td>
<td>32,767</td>
</tr>
<tr>
<td>int</td>
<td>32 bits</td>
<td>-2,147,483,648</td>
<td>2,147,483,647</td>
</tr>
<tr>
<td>long</td>
<td>64 bits</td>
<td>< -9 \times 10^{18}</td>
<td>> 9 \times 10^{18}</td>
</tr>
<tr>
<td>float</td>
<td>32 bits</td>
<td>+/- 3.4 \times 10^{38} with 7 significant digits</td>
<td></td>
</tr>
<tr>
<td>double</td>
<td>64 bits</td>
<td>+/- 1.7 \times 10^{308} with 15 significant digits</td>
<td></td>
</tr>
</tbody>
</table>
Characters

• A char variable stores a single character

• Character literals are delimited by single quotes:

 'a' 'X' '7' '$' ',' '
'

• Example declarations:

 char topGrade = 'A';
 char terminator = ';', separator = ' ';

• Note the difference between a primitive character variable, which holds only one character, and a String object, which can hold multiple characters
Character Sets

• A character set is an ordered list of characters, with each character corresponding to a unique number

• A char variable in Java can store any character from the Unicode character set

• The Unicode character set uses sixteen bits per character, allowing for 65,536 unique characters

• It is an international character set, containing symbols and characters from many world languages
Characters

- The *ASCII character set* is older and smaller than Unicode, but is still quite popular.

- The ASCII characters are a subset of the Unicode character set, including:

 - Uppercase letters: A, B, C, ...
 - Lowercase letters: a, b, c, ...
 - Punctuation: period, semi-colon, ...
 - Digits: 0, 1, 2, ...
 - Special symbols: &, |, \, ...
 - Control characters: carriage return, tab, ...
Boolean

• A boolean value represents a true or false condition

• The reserved words true and false are the only valid values for a boolean type

 boolean done = false;

• A boolean variable can also be used to represent any two states, such as a light bulb being on or off
Data Conversion

Widening Conversions

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>byte</td>
<td>short, int, long, float, or double</td>
</tr>
<tr>
<td>short</td>
<td>int, long, float, or double</td>
</tr>
<tr>
<td>char</td>
<td>int, long, float, or double</td>
</tr>
<tr>
<td>int</td>
<td>long, float, or double</td>
</tr>
<tr>
<td>long</td>
<td>float or double</td>
</tr>
<tr>
<td>float</td>
<td>double</td>
</tr>
</tbody>
</table>

Narrowing Conversions

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>byte</td>
<td>char</td>
</tr>
<tr>
<td>short</td>
<td>byte or char</td>
</tr>
<tr>
<td>char</td>
<td>byte or short</td>
</tr>
<tr>
<td>int</td>
<td>byte, short, or char</td>
</tr>
<tr>
<td>long</td>
<td>byte, short, char, or int</td>
</tr>
<tr>
<td>float</td>
<td>byte, short, char, int, or long</td>
</tr>
<tr>
<td>double</td>
<td>byte, short, char, int, long, or float</td>
</tr>
</tbody>
</table>
public class GPA04 {
 public static void main (String[] args) {
 int qp = 52;
 int credits = 16;
 double gpa = (double) qp / credits;

 System.out.println("Quality Points: "+ qp);
 System.out.println("Credits: "+ credits);
 System.out.println();
 System.out.println("\tGPA: "+ gpa);
 }
}
int qp = 52;
int credits = 16;
double gpa = (double) qp / credits;

System.out.println("Quality Points: " + qp);
System.out.println("Credits: " + credits);

First casting occurs, value from qp changed to double
Then promotion occurs to make both expressions the same type - so, value from credits is changed to double
int qp = 52;
int credits = 16;
double gpa = qp / credits;

Promotion occurs after the division --too late!

No casting

int division
Solution 4

public class GPA04
{
 public static void main (String[] args)
 {
 int qp = 52;
 int credits = 16;
 double gpa = (double) qp / credits;

 System.out.println ("Quality Points: " + qp);
 System.out.println ("Credits: " + credits);
 System.out.println ();
 System.out.println ("GPA: " + gpa);
 }
}
Topic Thread

- 2.1 Character Strings
- 2.2 Variables, Assignment
- 2.3 Data Types
- 2.4 Expressions (simple)
- 2.5 Data Conversion
- 2.6 Interactive Programs
- 5.1 Boolean Expressions
- 5.2 The if Statement
- 5.4 The while Statement
Interactive Programs

• The Scanner class has methods for reading input

• We declare a Scanner object to read input from the keyboard:

Scanner scan = new Scanner (System.in);
Reading Input

• Once created, the **Scanner** object can be used to invoke various input methods, such as:

```java
answer = scan.nextLine();
```

• The `nextLine` method reads all of the input until the end of the line is found.
Reading Input

- The Scanner class is part of the java.util class library, and must be imported into a program to be used.
- The import statement goes at beginning of your program (above class definition).

```
import java.util.Scanner;
```

(See Echo.java)

- The details of object creation and class libraries are discussed further in Chapter 3.
import java.util.Scanner;

public class Echo
{
 //---
 // Reads a character string from the user and prints it.
 //---
 public static void main (String[] args)
 {
 String message;
 Scanner scan = new Scanner (System.in);

 System.out.println ("Enter a line of text:");

 message = scan.nextLine();

 System.out.println ("You entered: " + message + ":\"\"");
 }
}
import java.util.Scanner;

public class Echo {
 // Reads a character string from the user and prints it.
 public static void main (String[] args) {
 String message;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter a line of text:");
 message = scan.nextLine();
 System.out.println ("You entered: \\
" + message + \\
"\"\");
 }
}

Sample Run
Enter a line of text:
You want fries with that?
You entered: "You want fries with that?"
Reading in numbers

- `nextInt` and reads in an integer:
- Example:

  ```java
  age = scan.nextInt();
  ```

- `nextDouble` similar method for type double

- *White space (space, tab, new line) can be used to separate input tokens*

- `next` reads the next input token and returns it as a string

- See [GasMileage.java](#)
import java.util.Scanner;

public class GasMileage
{
 // Calculates fuel efficiency based on values entered by the user.
 public static void main (String[] args)
 {
 int miles;
 double gallons, mpg;
 Scanner scan = new Scanner (System.in);
 continue
 }
}
System.out.print("Enter the number of miles: ");
miles = scan.nextInt();

System.out.print("Enter the gallons of fuel used: ");
gallons = scan.nextDouble();

mpg = miles / gallons;

System.out.println("Miles Per Gallon: " + mpg);
System.out.print("Enter the number of miles: ");
miles = scan.nextInt();
System.out.print("Enter the gallons of fuel used: ");
gallons = scan.nextDouble();
mpg = miles / gallons;
System.out.println("Miles Per Gallon: "+mpg);
Solution 5

- Note: Opening comment removed to allow better viewing.
- Now we are cooking.
- But, what if you haven’t taken any classes?
- Next we will add some control, i.e. some decision making capability.

```java
import java.util.Scanner;

public class GPA05 {
    public static void main (String[] args) {
        int qp;
        int credits;
        double gpa;
        Scanner scan = new Scanner(System.in);
        // get input
        System.out.print("Enter Quality Points > ");
        qp = scan.nextInt();
        System.out.print("Enter Credits > ");
        credits = scan.nextInt();
        // calculate gpa
        gpa = (double) qp / credits;
        // output information
        System.out.println("\nQuality Points: " + qp);
        System.out.println("Credits: 
Credits: " + credits);
        System.out.println("GPA: " + gpa);
    }
}
```
Homework

• Read Sections 2.5, 2.6

 – **Always** do all self-review exercises when you review material

• Do Exercises EX 2.10 and as many of PP 2.2-2.8 as you can